The List Point Arboricity of Some Complete Multi-partite Graphs

被引:0
作者
Xue, Nini [1 ]
Wang, Wei [1 ]
机构
[1] Tarim Univ, Coll Informat Engn, Alar 843300, Xinjiang, Peoples R China
关键词
List point arboricity; Complete multi-partite graphs; NUMBER;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a graph. The point arboricity of G, denoted by rho(G), is the minimum number of colors that can be used to color the vertices of G so that each color class induces an acyclic subgraph of G. The list point arboricity rho(l)(G) is the minimum k so that there is an acyclic L-coloring for any list assignment L of G which vertical bar L(v)vertical bar >= k. So rho(G) <= rho(l)(G). Zhen and Wu conjectured that if vertical bar V(G)vertical bar <= 3 rho(G), then rho(l)(G) = rho(G). Motivated by this, we investigate the list point arboricity of some complete multi-partite graphs of order slightly larger than 3 rho(G), and obtain p(K-m(1),K- 2(n - 1)) = rho(l)(K-m(1),K- 2(n - 1)) (m = 2, 3, 4).
引用
收藏
页码:457 / 462
页数:6
相关论文
共 16 条
[1]   Choice number of some complete multi-partite graphs [J].
Enomoto, H ;
Ohba, K ;
Ota, K ;
Sakamoto, J .
DISCRETE MATHEMATICS, 2002, 244 (1-3) :55-66
[2]   LIST POINT ARBORICITY OF GRAPHS [J].
Xue, Nini ;
Wu, Baoyindureng .
DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2012, 4 (02)
[3]   List Point Arboricity of Dense Graphs [J].
Lingyan Zhen ;
Baoyindureng Wu .
Graphs and Combinatorics, 2009, 25 :123-128
[4]   List Point Arboricity of Dense Graphs [J].
Zhen, Lingyan ;
Wu, Baoyindureng .
GRAPHS AND COMBINATORICS, 2009, 25 (01) :123-128
[5]   On the page number of complete odd-partite graphs [J].
Sperfeld, Konrad .
DISCRETE MATHEMATICS, 2013, 313 (17) :1689-1696
[6]   QLS-Integrality of Complete r-Partite Graphs [J].
Pokorny, Milan .
FILOMAT, 2015, 29 (05) :1043-1051
[7]   The competition numbers of complete multipartite graphs with many partite sets [J].
Kim, Suh-Ryung ;
Park, Boram ;
Sano, Yoshio .
DISCRETE APPLIED MATHEMATICS, 2012, 160 (7-8) :1176-1182
[8]   On uniquely list colorable complete multipartite graphs [J].
Shen, Yufa ;
Wang, Yanning ;
He, Wenjie ;
Zhao, Yongqiang .
ARS COMBINATORIA, 2008, 88 :367-377
[9]   Complexity of Products of Some Complete and Complete Bipartite Graphs [J].
Daoud, S. N. .
JOURNAL OF APPLIED MATHEMATICS, 2013,
[10]   On Uniquely 4-List Colorable Complete Multipartite Graphs [J].
Wang, Yanning ;
Shen, Yufa ;
Zheng, Guoping ;
He, Wenjie .
ARS COMBINATORIA, 2009, 93 :203-214