Investigations of the temperature distribution in proton exchange membrane fuel cells

被引:52
|
作者
Jung, Chi-Young [1 ]
Shim, Hyo-Sub [2 ]
Moo, Sang-Man [1 ]
Lee, Sang-Hwan [3 ]
Yi, Sung-Chul [1 ]
机构
[1] Hanyang Univ, Dept Chem Engn, Seoul 133791, South Korea
[2] Hyundai Kia Motors, Fuel Cell Vehicle Team 1, Gilheung Gu 446912, Yongin, South Korea
[3] Hanyang Univ, Dept Mech Engn, Seoul 133791, South Korea
基金
新加坡国家研究基金会;
关键词
PEMFC; Non-isothermal; Agglomerate; Nafion; CFD; CATHODE CATALYST LAYER; AGGLOMERATE MODEL; OPTIMIZATION; PERFORMANCE; ELECTRODES; CONDUCTIVITY; TRANSPORT; WATER;
D O I
10.1016/j.apenergy.2011.08.035
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
A two-dimensional, non-isothermal model of a proton exchange membrane fuel cell was implemented to elucidate heat balance through the membrane electrode assembly (MEA). To take local utilization of platinum catalyst into account, the model was presented by considering the formation of agglomerated catalyst structure in the electrodes. To estimate energy balance through the MEA, various modes of heat generation and depletion by reversible/irreversible heat release, ohmic heating and phase change of water were included in the present model. In addition, dual-pathway kinetics, that is a combination of Heyrovsky-Volmer and Tafel-Volmer kinetics, were employed to precisely describe the hydrogen oxidation reaction. The proposed model was validated with experimental cell polarization, resulting in excellent fit. The temperature distribution inside the MEA was analyzed by the model. Consequently, a thorough investigation was made of the relation between membrane thickness and the temperature distribution inside the MEA. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:733 / 741
页数:9
相关论文
共 50 条
  • [21] Prolongation of lifetime of high temperature proton exchange membrane fuel cells
    Oono, Yuka
    Sounai, Atsuo
    Hori, Michio
    JOURNAL OF POWER SOURCES, 2013, 241 : 87 - 93
  • [22] Phosphoric Acid Based Proton Exchange Membranes for High Temperature Proton Exchange Membrane Fuel Cells
    Bai, Yu
    Wang, Shuanjin
    Xiao, Min
    Meng, Yuezhong
    Wang, Chengxin
    PROGRESS IN CHEMISTRY, 2021, 33 (03) : 426 - 441
  • [23] In Situ Measurement of Temperature Distribution across a Proton Exchange Membrane Fuel Cell
    Lee, Sang-Kun
    Ito, Kohei
    Ohshima, Toshihiro
    Noda, Shiun
    Sasaki, Kazunari
    ELECTROCHEMICAL AND SOLID STATE LETTERS, 2009, 12 (09) : B126 - B130
  • [24] Poly(dimethyl siloxane) Membrane for High Temperature Proton Exchange Membrane Fuel Cells
    Ghil, Lee-Jin
    Kim, Chang-Kyeom
    Kang, Jung-Soo
    Kim, Young-Taek
    Rhee, Hee-Woo
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2009, 9 (12) : 6918 - 6922
  • [25] A novel asymmetric polybenzimidazole membrane for high temperature proton exchange membrane fuel cells
    Jheng, Li-Cheng
    Hsu, Steve Lien-Chung
    Tsai, Tzung-Yu
    Chang, Wesley Jen-Yang
    JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (12) : 4225 - 4233
  • [26] Proton exchange membrane nanocomposites for fuel cells
    Hickner, M
    Kim, YS
    Wang, F
    Zawodzinski, TA
    McGrath, JE
    ADVANCING AFFORDABLE MATERIALS TECHNOLOGY, 2001, 33 : 1519 - 1532
  • [27] Numerical Investigations on the Ultrasonic Atomization of Catalyst Inks for Proton Exchange Membrane Fuel Cells
    Li, Wenkang
    Bi, Xiaotao
    Luo, Maji
    Sui, Pang-Chieh
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2021, 168 (03)
  • [28] Adjoint Method for the Optimization of the Catalyst Distribution in Proton Exchange Membrane Fuel Cells
    Lamb, James
    Mixon, Grayson
    Andrei, Petru
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (11) : E3232 - E3242
  • [29] Analytical and experimental investigations of a proton exchange membrane fuel cell
    Ferng, YM
    Tzang, YC
    Pei, BS
    Sun, CC
    Su, A
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2004, 29 (04) : 381 - 391
  • [30] Proton exchange membrane with hydrophilic capillaries for elevated temperature PEM fuel cells
    Yan, Xue-Min
    Mei, Ping
    Mi, Yuanzhu
    Gao, Lin
    Qin, Shaoxiong
    ELECTROCHEMISTRY COMMUNICATIONS, 2009, 11 (01) : 71 - 74