(Liquid plus liquid) equilibria for the ternary system of (N-formylmorpholine plus ethylbenzene plus 2,2,4-trimethylpentane) at temperatures (303.15, 313.15, and 323.15) K

被引:27
|
作者
Wang, Zhengrong [1 ]
Xia, Shuqian [1 ]
Ma, Peisheng [1 ]
机构
[1] Tianjin Univ, Key Lab Green Chem Technol, State Educ Minist, Sch Chem Engn & Technol, Tianjin 300072, Peoples R China
基金
中国国家自然科学基金;
关键词
N-formylmorpholine; Liquid-liquid phase equilibrium; NRTL; UNIQUAC; BINARY-SYSTEMS; BRANCHED CYCLOALKANES; SULFOLANE; HYDROCARBONS; EXTRACTION; MIXTURES;
D O I
10.1016/j.fluid.2012.05.010
中图分类号
O414.1 [热力学];
学科分类号
摘要
Being an extraction solvent, N-formylmorpholine (NFM) is widely used to separate aromatic and aliphatic hydrocarbons. In order to get the LLE data and the interaction parameters of the ternary system of (NFM + ethylbenzene + 2,2,4-trimethylpentane), the (liquid + liquid) equilibrium (LLE) data were measured for the ternary system under atmospheric pressure and at temperatures (303.15, 313.15, and 323.15) K in this work. The data can also demonstrate the ability for NFM to remove ethylbenzene from the mixture with 2,2,4-trimethylpentane. The complete phase diagrams were obtained by determining the solubility and the tie-line data. The tie-line compositions were correlated by Othmer-Tobias equation. The correlation factors r(2) are bigger than 0.981. The universal quasi-Chemical activity coefficient (UNIQUAC) and the nonrandom two liquids equation (NRTL) were used to calculate the phase equilibrium data of the system with the interaction parameters fitted from the experimental data. It is found that both UNIQUAC and NRTL models could provide good correlations for the LLE data of the system. The root mean square deviation (RMSD) values for the NRTL and UIQUAC models are less than 0.0083 at all temperatures. In addition, the distribution coefficients, separation factors and selectivity were evaluated for the immiscibility region and the extracting capability of the solvents. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:25 / 30
页数:6
相关论文
共 50 条
  • [1] Measurement of (liquid plus liquid) equilibria for ternary systems of (N-formylmorpholine plus benzene plus cyclohexane) at temperatures (303.15, 308.15, and 313.15) K
    Ghannad, S. MohammadReza Seyedein
    Lotfollahi, Mohammad Nader
    Asl, Ali Haghighi
    JOURNAL OF CHEMICAL THERMODYNAMICS, 2011, 43 (06): : 938 - 942
  • [2] Liquid-liquid equilibria for cyclohexane plus ethylbenzene plus sulfolane at (303.15, 313.15, and 323.15) K
    Ashour, Ibrahim
    Abu-Eishah, Samir I.
    JOURNAL OF CHEMICAL AND ENGINEERING DATA, 2006, 51 (03): : 859 - 863
  • [3] (Liquid plus liquid) equilibria of {heptane plus xylene plus N-formylmorpholine} ternary system
    Chen DongChu
    Ye HongQi
    Wu Hao
    JOURNAL OF CHEMICAL THERMODYNAMICS, 2007, 39 (12): : 1571 - 1577
  • [4] (Liquid plus liquid) equilibria of ternary and quaternary systems including 2,2,4-trimethylpentane, benzene, methanol, and water at T=303.15 K
    de Doz, MBG
    Bonatti, CM
    Barnes, N
    Sólimo, HN
    JOURNAL OF CHEMICAL THERMODYNAMICS, 2001, 33 (12): : 1663 - 1677
  • [5] (Liquid plus liquid) equilibria of three ternary systems:: (heptane plus benzene plus N-formylmorpholine), (heptane plus toluene plus N-formylmorpholine), (heptane plus xylene plus N-formylmorpholine) from T = (298.15 to 353.15) K
    Chen, DongChu
    Ye, HongQi
    Wu, Hao
    JOURNAL OF CHEMICAL THERMODYNAMICS, 2007, 39 (08): : 1182 - 1188
  • [6] Liquid-Liquid Equilibria for Monoethylene Glycol plus Hexane and 2,2,4-Trimethylpentane, Water plus Hexane and 2,2,4-Trimethylpentane, Monoethylene Glycol plus Water plus Hexane, and Monoethylene Glycol + Water+2,2,4-Trimethylpentane in the Temperature Range between T=283.15 K and T=323.15 K
    Razzouk, Antonio
    Abou Naccoul, Ramy
    Mokbel, Ilham
    Duchet-Suchaux, Pierre
    Jose, Jacques
    Rauzy, Evelyne
    Berro, Charles
    JOURNAL OF CHEMICAL AND ENGINEERING DATA, 2010, 55 (04): : 1468 - 1472
  • [7] (Liquid plus liquid) equilibria of oxygenate fuel additives with water: (water plus diisopropyl ether plus 2,2,4-trimethylpentane plus ethanol) and (water plus diisopropyl ether plus 2,2,4-trimethylpentane plus 2-propanol)
    Chen, Yao
    Zhang, Shengli
    JOURNAL OF CHEMICAL AND ENGINEERING DATA, 2006, 51 (04): : 1236 - 1241
  • [8] Vapour-liquid equilibria of the ternary mixture (1-pentanol+2,2,4-trimethylpentane plus heptane) and the binary mixture (2,2,4-trimethylpentane plus heptane) at T=313.15 K for the characterization of second generation biofuels
    Moreau, Alejandro
    Segovia, Jose J.
    Villamanan, Miguel A.
    Carmen Martin, M.
    FLUID PHASE EQUILIBRIA, 2015, 405 : 101 - 106
  • [9] VAPOR-LIQUID-EQUILIBRIA OF ETHANOL PLUS 2,2,4-TRIMETHYLPENTANE AT 333.15-K AND 1-PROPANOL PLUS 2,2,4-TRIMETHYLPENTANE AT 343.15-K
    HIAKI, T
    TAKAHASHI, K
    TSUJI, T
    HONGO, M
    KOJIMA, K
    JOURNAL OF CHEMICAL AND ENGINEERING DATA, 1994, 39 (03): : 605 - 607
  • [10] Solubility of anthracene in ternary propanol plus 2,2,4-trimethylpentane plus cyclohexane and butanol plus 2,2,4-trimethylpentane plus cyclohexane solvent mixtures
    Deng, TH
    Acree, WE
    JOURNAL OF CHEMICAL AND ENGINEERING DATA, 1998, 43 (06): : 1059 - 1061