We investigate dynamic responses of axially moving viscoelastic bean subject to a randomly disordered periodic excitation. The method of multiple scales is used to derive the analytical expression of first-order uniform expansion of the solution. Based on the largest Lyapunov exponent, the almost sure stability of the trivial steady-state solution is examined. Meanwhile, we obtain the first-order and the second-order steady-state moments for the non-trivial steady-state solutions. Specially, we discuss the first mode theoretically and numerically. Results show that under the same conditions of the parameters, as the intensity of the random excitat on increases, non-trivial steady-state solution fluctuation will become strenuous, which will result in the non-trivial steady-state solution lose stability and the trivial steady-state solution can be a possible. In the case of parametric principal resonance, the stochastic jump is observed for the first mode, which indicates that the stationary joint probability density concentrates at the non-trivial solution branch when the random excitation is small, but with the increase of intensity of the random excitation, the probability of the trivial steady-state solution will become larger. This phenomenon of stochastic jump can be defined as a stochastic bifurcation. (C) 2012 Elsevier Ltd. All rights reserved.