Phase retrieval of finite Blaschke projection

被引:2
作者
Li, Youfa [1 ]
Zhou, Chunxu [1 ]
机构
[1] Guangxi Univ, Coll Math & Informat Sci, Nanning, Peoples R China
关键词
Blaschke product measurement; Hardy space; instantaneous frequency; phase retrieval; recursive reconstruction; uniqueness; FOURIER-TRANSFORM; CRYSTALLOGRAPHY; RECONSTRUCTION;
D O I
10.1002/mma.6603
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Phase retrieval by Fourier measurements is a classical application in coherent diffraction imaging, and the modified Blaschke products (MBPs) are the generalization of linear Fourier atoms. Motivated by this, we investigate the phase retrieval modeled as to reconstructP(f)= n-ary sumation k=0 infinity⟨f,B{a0,a1, horizontal ellipsis ,ak}⟩B{a0,a1, horizontal ellipsis ,ak}by the intensity measurements{|⟨f,Bk1⟩|,|⟨f,Bk2⟩|,|⟨f,Bk3⟩|:k >= 1}, whereflies in Hardy spaceScript capital H2(D)such thatf(a(0))=0,B{a0,a1, horizontal ellipsis ,ak}andBkiare all the finite MBPs. We establish the condition onBkisuch thatP(f)can be determined, up to a unimodular scalar, by the above measurements. A byproduct of our result is that the instantaneous frequency of the target can be exactly reconstructed by the above intensity measurements. Moreover, a recursive algorithm for the phase retrieval is established. Numerical simulations are conducted to verify our result.
引用
收藏
页码:9090 / 9101
页数:12
相关论文
共 50 条
[31]   On the Uniqueness of the Phase Retrieval Problem From Far Field Amplitude-Only Data [J].
Inan, Kivanc ;
Diaz, Rodolfo E. .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2011, 59 (03) :1053-1057
[32]   Double-digital fringe projection for optical phase retrieval of a single frame [J].
Gutierrez Hernandez, D. A. ;
Atondo-Ruiz, G. ;
Parra Michel, J. R. ;
Santiago-Montero, R. ;
Romero, V. H. ;
Del Valle Hernandez, J. ;
Ibarra Solis, I. .
JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS, 2015, 17 (9-10) :1248-1252
[33]   Phase retrieval from coded diffraction patterns [J].
Candes, Emmanuel J. ;
Li, Xiaodong ;
Soltanolkotabi, Mandi .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2015, 39 (02) :277-299
[34]   Phase retrieval of bandlimited functions for the wavelet transform [J].
Alaifari, Rima ;
Bartolucci, Francesca ;
Wellershoff, Matthias .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2023, 64 :102-117
[35]   Phase Retrieval from Linear Canonical Transforms [J].
Chen, Yang ;
Qu, Na .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2022, 43 (15) :1760-1777
[36]   Phase retrieval of entire functions and its implications for Gabor phase retrieval [J].
Wellershoff, Matthias .
JOURNAL OF FUNCTIONAL ANALYSIS, 2024, 286 (11)
[37]   Projection Retrieval: Theory and Algorithms [J].
Fickus, Matthew ;
Mixon, Dustin G. .
2015 INTERNATIONAL CONFERENCE ON SAMPLING THEORY AND APPLICATIONS (SAMPTA), 2015, :183-186
[38]   Practical Framework for Phase Retrieval and Invalidity Identification with Temporal Phase Unwrapping Method in Fringe Projection Profilometry [J].
Huang, Lei ;
Asundi, Anand Krishna .
EXPERIMENTAL MECHANICS AND MATERIALS, 2011, 83 :179-184
[39]   Weak Phase Retrieval [J].
Botelho-Andrade, Sara ;
Casazza, Peter G. ;
Ghoreishi, Dorsa ;
Jose, Shani ;
Tremain, Janet C. .
COMPRESSED SENSING AND ITS APPLICATIONS, 2017, :221-234
[40]   Phase retrieval in nanocrystallography [J].
Chen, Joe P. J. ;
Spence, John C. H. ;
Millane, Rick P. .
IMAGE RECONSTRUCTION FROM INCOMPLETE DATA VII, 2012, 8500