Phase retrieval of finite Blaschke projection

被引:2
作者
Li, Youfa [1 ]
Zhou, Chunxu [1 ]
机构
[1] Guangxi Univ, Coll Math & Informat Sci, Nanning, Peoples R China
关键词
Blaschke product measurement; Hardy space; instantaneous frequency; phase retrieval; recursive reconstruction; uniqueness; FOURIER-TRANSFORM; CRYSTALLOGRAPHY; RECONSTRUCTION;
D O I
10.1002/mma.6603
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Phase retrieval by Fourier measurements is a classical application in coherent diffraction imaging, and the modified Blaschke products (MBPs) are the generalization of linear Fourier atoms. Motivated by this, we investigate the phase retrieval modeled as to reconstructP(f)= n-ary sumation k=0 infinity⟨f,B{a0,a1, horizontal ellipsis ,ak}⟩B{a0,a1, horizontal ellipsis ,ak}by the intensity measurements{|⟨f,Bk1⟩|,|⟨f,Bk2⟩|,|⟨f,Bk3⟩|:k >= 1}, whereflies in Hardy spaceScript capital H2(D)such thatf(a(0))=0,B{a0,a1, horizontal ellipsis ,ak}andBkiare all the finite MBPs. We establish the condition onBkisuch thatP(f)can be determined, up to a unimodular scalar, by the above measurements. A byproduct of our result is that the instantaneous frequency of the target can be exactly reconstructed by the above intensity measurements. Moreover, a recursive algorithm for the phase retrieval is established. Numerical simulations are conducted to verify our result.
引用
收藏
页码:9090 / 9101
页数:12
相关论文
共 50 条
[21]   Phase retrieval for grating phase-contrast CT [J].
Li, Haiyang ;
Cao, Weiguo ;
Wang, Siyuan ;
Li, Shirui ;
Li, Hua .
PROCEEDINGS OF 2013 IEEE INTERNATIONAL CONFERENCE ON MEDICAL IMAGING PHYSICS AND ENGINEERING (ICMIPE), 2013, :297-301
[22]   Phase retrieval and norm retrieval [J].
Bahmanpour, Saeid ;
Cahill, Jameson ;
Casazza, Peter G. ;
Jasper, John ;
Woodland, Lindsey M. .
TRENDS IN HARMONIC ANALYSIS AND ITS APPLICATIONS, 2015, 650 :3-14
[23]   Nonlinear Phase Retrieval Using Projection Operator and Iterative Wavelet Thresholding [J].
Davidoiu, Valentina ;
Sixou, Bruno ;
Langer, Max ;
Peyrin, Francoise .
IEEE SIGNAL PROCESSING LETTERS, 2012, 19 (09) :579-582
[24]   Phase retrieval with the reverse projection method in the presence of object's scattering [J].
Wang, Zhili ;
Gao, Kun ;
Wang, Dajiang .
RADIATION PHYSICS AND CHEMISTRY, 2017, 137 :33-36
[25]   PhaseWare: Phase map retrieval for fringe projection profilometry and off-axis digital holographic interferometry [J].
Omidi, Parsa ;
Yip, Lawrence C. M. ;
Wang, Hui ;
Diop, Mamadou ;
Carson, Jeffrey J. L. .
SOFTWAREX, 2021, 13
[26]   Holographic phase retrieval and reference design [J].
Barmherzig, David A. ;
Sun, Ju ;
Li, Po-Nan ;
Lane, T. J. ;
Candes, Emmanuel J. .
INVERSE PROBLEMS, 2019, 35 (09)
[27]   Phase retrieval for radar waveform design [J].
Pinilla, Samuel ;
Mishra, Kumar Vijay ;
Sadler, Brian M. ;
Arguello, Henry .
INFORMATION AND INFERENCE-A JOURNAL OF THE IMA, 2024, 13 (03)
[28]   An Alternating Optimization Approach for Phase Retrieval [J].
Ming, Huaiping ;
Huang, Dongyan ;
Xie, Lei ;
Lie, Haizhou ;
Dong, Minghui .
16TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2015), VOLS 1-5, 2015, :3426-3430
[29]   Phase Retrieval Using Alternating Minimization [J].
Netrapalli, Praneeth ;
Jain, Prateek ;
Sanghavi, Sujay .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2015, 63 (18) :4814-4826
[30]   An effective assessment method for absolute phase retrieval in digital fringe projection profilometry [J].
Xing, Yidan ;
Quan, Chenggen .
MEASUREMENT SCIENCE AND TECHNOLOGY, 2018, 29 (08)