Non-negative sub-tensor ensemble factorization (NsTEF) algorithm. A new incremental tensor factorization for large data sets

被引:5
作者
Vigneron, Vincent [1 ]
Kodewitz, Andreas [1 ]
da Costa, Michele Nazareth [2 ]
Tome, Ana Maria [3 ]
Langlang, Elmar [4 ]
机构
[1] Univ Paris Saclay, Univ Ewy, IBISC, F-91025 Evry, France
[2] Univ Campinas UNICAMP, DSPCom Lab, POB 6101, BR-13083852 Campinas, SP, Brazil
[3] Univ Aveiro, Dept Elect Telecomunicacoes & Informat, Aveiro, Portugal
[4] Univ Regensburg, Inst Biophys & Phys Biochem, Univ Str 31, D-93040 Regensburg, Germany
基金
巴西圣保罗研究基金会;
关键词
Non-negative tensor decomposition; CANDECOMP/PARAFAC Decomposition; Matrix factorization; NTF; Incremental algorithm; Learning method; MATRIX FACTORIZATION; CANONICAL DECOMPOSITION; UNIQUENESS; CANDECOMP/PARAFAC; CLASSIFICATION; RECOGNITION; MODE;
D O I
10.1016/j.sigpro.2017.09.012
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this work we present a novel algorithm for nonnegative tensor factorization (NTF). Standard NTF algorithms are very restricted in the size of tensors that can be decomposed. Our algorithm overcomes this size restriction by interpreting the tensor as a set of sub-tensors and by proceeding the decomposition of sub-tensor by sub-tensor. This approach requires only one sub-tensor at once to be available in memory. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:77 / 86
页数:10
相关论文
共 69 条
[21]  
Debals O., 2016, P 24 EUR SIGN PROC C
[22]   Computing non-negative tensor factorizations [J].
Friedlander, Michael P. ;
Hatz, Kathrin .
OPTIMIZATION METHODS & SOFTWARE, 2008, 23 (04) :631-647
[23]  
Guillamet D, 2002, INT C PATT RECOG, P116, DOI 10.1109/ICPR.2002.1048251
[24]   UNI-MODE AND PARTIAL UNIQUENESS CONDITIONS FOR CANDECOMP/PARAFAC OF THREE-WAY ARRAYS WITH LINEARLY DEPENDENT LOADINGS [J].
Guo, Xijing ;
Miron, Sebastian ;
Brie, David ;
Stegeman, Alwin .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2012, 33 (01) :111-129
[25]  
Harshman R.L., 1972, UCLA WORKING PAPERS, V22, P111
[26]  
Hazan T, 2005, IEEE I CONF COMP VIS, P50
[27]  
Hazan T., 2005, INT C MACH LEARN BON
[28]  
Hitchcock F. L., 1927, J MATH PHYS, V6, P164, DOI [DOI 10.1002/SAPM192761164, 10.1002/sapm192761164]
[29]  
Hoyer PO, 2004, J MACH LEARN RES, V5, P1457
[30]  
Hoyer PO, 2002, NEURAL NETWORKS FOR SIGNAL PROCESSING XII, PROCEEDINGS, P557, DOI 10.1109/NNSP.2002.1030067