Non-negative sub-tensor ensemble factorization (NsTEF) algorithm. A new incremental tensor factorization for large data sets

被引:5
|
作者
Vigneron, Vincent [1 ]
Kodewitz, Andreas [1 ]
da Costa, Michele Nazareth [2 ]
Tome, Ana Maria [3 ]
Langlang, Elmar [4 ]
机构
[1] Univ Paris Saclay, Univ Ewy, IBISC, F-91025 Evry, France
[2] Univ Campinas UNICAMP, DSPCom Lab, POB 6101, BR-13083852 Campinas, SP, Brazil
[3] Univ Aveiro, Dept Elect Telecomunicacoes & Informat, Aveiro, Portugal
[4] Univ Regensburg, Inst Biophys & Phys Biochem, Univ Str 31, D-93040 Regensburg, Germany
基金
巴西圣保罗研究基金会;
关键词
Non-negative tensor decomposition; CANDECOMP/PARAFAC Decomposition; Matrix factorization; NTF; Incremental algorithm; Learning method; MATRIX FACTORIZATION; CANONICAL DECOMPOSITION; UNIQUENESS; CANDECOMP/PARAFAC; CLASSIFICATION; RECOGNITION; MODE;
D O I
10.1016/j.sigpro.2017.09.012
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this work we present a novel algorithm for nonnegative tensor factorization (NTF). Standard NTF algorithms are very restricted in the size of tensors that can be decomposed. Our algorithm overcomes this size restriction by interpreting the tensor as a set of sub-tensors and by proceeding the decomposition of sub-tensor by sub-tensor. This approach requires only one sub-tensor at once to be available in memory. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:77 / 86
页数:10
相关论文
共 50 条
  • [1] Non-negative Multiple Tensor Factorization
    Takeuchi, Koh
    Tomioka, Ryota
    Ishiguro, Katsuhiko
    Kimura, Akisato
    Sawada, Hiroshi
    2013 IEEE 13TH INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2013, : 1199 - 1204
  • [2] Controlling sparseness in non-negative tensor factorization
    Heiler, M
    Schnörr, C
    COMPUTER VISION - ECCV 2006 , PT 1, PROCEEDINGS, 2006, 3951 : 56 - 67
  • [3] Non-negative tensor factorization using α and β divergences
    Cichocki, Andrzej
    Zdunek, Rafal
    Choi, Seungjin
    Plemmons, Robert
    Amari, Shun-ichi
    2007 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL III, PTS 1-3, PROCEEDINGS, 2007, : 1393 - +
  • [4] CitySpectrum: A Non-negative Tensor Factorization Approach
    Fan, Zipei
    Song, Xuan
    Shibasaki, Ryosuke
    UBICOMP'14: PROCEEDINGS OF THE 2014 ACM INTERNATIONAL JOINT CONFERENCE ON PERVASIVE AND UBIQUITOUS COMPUTING, 2014, : 213 - 223
  • [5] Non-negative Tensor Factorization for Speech Enhancement
    He, Liang
    Zhang, Weiqiang
    Shi, Mengnan
    PROCEEDINGS OF THE 2016 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE: TECHNOLOGIES AND APPLICATIONS, 2016, 127
  • [6] Non-negative tensor factorization workflow for time series biomedical data
    Tsuyuzaki, Koki
    Yoshida, Naoki
    Ishikawa, Tetsuo
    Goshima, Yuki
    Kawakami, Eiryo
    STAR PROTOCOLS, 2023, 4 (03):
  • [7] Scalable Bayesian Non-negative Tensor Factorization for Massive Count Data
    Hu, Changwei
    Rai, Piyush
    Chen, Changyou
    Harding, Matthew
    Carin, Lawrence
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2015, PT II, 2015, 9285 : 53 - 70
  • [8] FacetCube: a general framework for non-negative tensor factorization
    Chi, Yun
    Zhu, Shenghuo
    KNOWLEDGE AND INFORMATION SYSTEMS, 2013, 37 (01) : 155 - 179
  • [9] FacetCube: a general framework for non-negative tensor factorization
    Yun Chi
    Shenghuo Zhu
    Knowledge and Information Systems, 2013, 37 : 155 - 179
  • [10] Polarization Image Interpolation Algorithm via Tensor Non-Negative Sparse Factorization
    Zhang Junchao
    Chen Jianlai
    Luo Haibo
    Yang Degui
    Liang Buge
    ACTA OPTICA SINICA, 2021, 41 (14)