Application of Machine Learning in Hospitalized Patients with Severe COVID-19 Treated with Tocilizumab

被引:3
作者
Ramon, Antonio [1 ]
Zaragoza, Marta [1 ]
Maria Torres, Ana [2 ]
Cascon, Joaquin [2 ]
Blasco, Pilar [1 ]
Milara, Javier [1 ,3 ,4 ]
Mateo, Jorge [2 ]
机构
[1] Gen Univ Hosp, Dept Pharm, Valencia 46014, Spain
[2] Univ Castilla La Mancha, Inst Technol, Cuenca 16002, Spain
[3] Univ Valencia, Fac Med, Dept Pharmacol, Valencia 46010, Spain
[4] Hlth Inst Carlos III, Ctr Biomed Res Network Resp Dis CIBERES, Madrid 28029, Spain
关键词
COVID-19; SARS-CoV-2; machine learning; cytokine release syndrome; tocilizumab; CRITICALLY-ILL PATIENTS; CLASSIFICATION; PHENOTYPES; INHIBITORS; MORTALITY; DISEASE;
D O I
10.3390/jcm11164729
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Among the IL-6 inhibitors, tocilizumab is the most widely used therapeutic option in patients with SARS-CoV-2-associated severe respiratory failure (SRF). The aim of our study was to provide evidence on predictors of poor outcome in patients with COVID-19 treated with tocilizumab, using machine learning (ML) techniques. We conducted a retrospective study, analyzing the clinical, laboratory and sociodemographic data of patients admitted for severe COVID-19 with SRF, treated with tocilizumab. The extreme gradient boost (XGB) method had the highest balanced accuracy (93.16%). The factors associated with a worse outcome of tocilizumab use in terms of mortality were: baseline situation at the start of tocilizumab treatment requiring invasive mechanical ventilation (IMV), elevated ferritin, lactate dehydrogenase (LDH) and glutamate-pyruvate transaminase (GPT), lymphopenia, and low PaFi [ratio between arterial oxygen pressure and inspired oxygen fraction (PaO2/FiO(2))] values. The factors associated with a worse outcome of tocilizumab use in terms of hospital stay were: baseline situation at the start of tocilizumab treatment requiring IMV or supplemental oxygen, elevated levels of ferritin, glutamate-oxaloacetate transaminase (GOT), GPT, C-reactive protein (CRP), LDH, lymphopenia, and low PaFi values. In our study focused on patients with severe COVID-19 treated with tocilizumab, the factors that were weighted most strongly in predicting worse clinical outcome were baseline status at the start of tocilizumab treatment requiring IMV and hyperferritinemia.
引用
收藏
页数:15
相关论文
共 65 条
[31]   Prediction of in-hospital mortality with machine learning for COVID-19 patients treated with steroid and remdesivir [J].
Kuno, Toshiki ;
Sahashi, Yuki ;
Kawahito, Shinpei ;
Takahashi, Mai ;
Iwagami, Masao ;
Egorova, Natalia N. .
JOURNAL OF MEDICAL VIROLOGY, 2022, 94 (03) :958-964
[32]   Laboratory parameters predicting mortality of adult in-patients with COVID-19 associated cytokine release syndrome treated with high-dose tocilizumab [J].
Lakatos, Botond ;
Szabo, Balint Gergely ;
Bobek, Ilona ;
Gopcsa, Laszlo ;
Beko, Gabriella ;
Kiss-Dala, Noemi ;
Petrik, Borisz ;
Gaspar, Zsofia ;
Farkas, Balazs Ferenc ;
Sinko, Janos ;
Remenyi, Peter ;
Szlavik, Janos ;
Valyi-Nagy, Istvan .
ACTA MICROBIOLOGICA ET IMMUNOLOGICA HUNGARICA, 2021, 68 (03) :145-152
[33]   Machine Learning as a Precision-Medicine Approach to Prescribing COVID-19 Pharmacotherapy with Remdesivir or Corticosteroids [J].
Lam, Carson ;
Siefkas, Anna ;
Zelin, Nicole S. ;
Barnes, Gina ;
Dellinger, R. Phillip ;
Vincent, Jean-Louis ;
Braden, Gregory ;
Burdick, Hoyt ;
Hoffman, Jana ;
Calvert, Jacob ;
Mao, Qingqing ;
Das, Ritankar .
CLINICAL THERAPEUTICS, 2021, 43 (05) :871-885
[34]   Co-infections in people with COVID-19: a systematic review and meta-analysis [J].
Lansbury, Louise ;
Lim, Benjamin ;
Baskaran, Vadsala ;
Lim, Wei Shen .
JOURNAL OF INFECTION, 2020, 81 (02) :266-275
[35]   Predictive values of neutrophil-to-lymphocyte ratio on disease severity and mortality in COVID-19 patients: a systematic review and meta-analysis [J].
Li, Xiaoming ;
Liu, Chao ;
Mao, Zhi ;
Xiao, Minglu ;
Wang, Li ;
Qi, Shuang ;
Zhou, Feihu .
CRITICAL CARE, 2020, 24 (01)
[36]   Predictive factors of mortality in patients treated with tocilizumab for acute respiratory distress syndrome related to coronavirus disease 2019 (COVID-19) [J].
Lohse, Anne ;
Klopfenstein, Timothee ;
Balblanc, Jean-Charles ;
Royer, Pierre-Yves ;
Bossert, Marie ;
Gendrin, Vincent ;
Charpentier, Aline ;
Bozgan, Ana-Maria ;
Badie, Julio ;
Bourgoin, Charlotte ;
Contreras, Remy ;
Mazurier, Isabelle ;
Conrozier, Thierry ;
Zayet, Souheil .
MICROBES AND INFECTION, 2020, 22 (09) :500-503
[37]   Efficacy and safety of tocilizumab in hospitalized COVID-19 patients: A systematic review and meta-analysis [J].
Luo, Lili ;
Luo, Ting ;
Du, Mengyi ;
Mei, Heng ;
Hu, Yu .
JOURNAL OF INFECTION, 2022, 84 (03) :433-438
[38]   Diagnostic classification of cancers using extreme gradient boosting algorithm and multi-omics data [J].
Ma, Baoshan ;
Meng, Fanyu ;
Yan, Ge ;
Yan, Haowen ;
Chai, Bingjie ;
Song, Fengju .
COMPUTERS IN BIOLOGY AND MEDICINE, 2020, 121
[39]   The Automatic Detection of Seizure Based on Tensor Distance And Bayesian Linear Discriminant Analysis [J].
Ma, Delu ;
Yuan, Shasha ;
Shang, Junliang ;
Liu, Jinxing ;
Dai, Lingyun ;
Kong, Xiangzhen ;
Xu, Fangzhou .
INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2021, 31 (05)
[40]   Predictors of poor outcome in tocilizumab treated patients with Sars-CoV-2 related severe respiratory failure: A multicentre real world study [J].
Masotti, Luca ;
Landini, Giancarlo ;
Panigada, Grazia ;
Grifoni, Elisa ;
Tarquini, Roberto ;
Cei, Francesco ;
Cimolato, Barbara Maria Angela ;
Vannucchi, Vieri ;
Di Pietro, Massimo ;
Piani, Fiorella ;
Fortini, Alberto ;
Faraone, Antonio ;
Nenci, Gabriele ;
Cipollini, Franco ;
Blanc, Pierluigi ;
Lotti, Pamela ;
Di Natale, Massimo ;
Risaliti, Filippo ;
Aquilini, Donatella ;
Seravalle, Cristiana ;
Bribani, Andrea ;
Farsi, Alessandro ;
Micheletti, Irene ;
Cioni, Elisa ;
Pelagalli, Giulia ;
Mattaliano, Chiara ;
Pinto, Gabriele ;
Madonia, Elisa Maria ;
Sivieri, Irene ;
Mannini, Marianna ;
Valoriani, Alice ;
Brancati, Simona ;
Rosselli, Matteo ;
Pavone, Eleonora ;
Burla, Maria Chiara ;
Sergi, Alessandro .
INTERNATIONAL IMMUNOPHARMACOLOGY, 2022, 107