Application of Machine Learning in Hospitalized Patients with Severe COVID-19 Treated with Tocilizumab

被引:3
作者
Ramon, Antonio [1 ]
Zaragoza, Marta [1 ]
Maria Torres, Ana [2 ]
Cascon, Joaquin [2 ]
Blasco, Pilar [1 ]
Milara, Javier [1 ,3 ,4 ]
Mateo, Jorge [2 ]
机构
[1] Gen Univ Hosp, Dept Pharm, Valencia 46014, Spain
[2] Univ Castilla La Mancha, Inst Technol, Cuenca 16002, Spain
[3] Univ Valencia, Fac Med, Dept Pharmacol, Valencia 46010, Spain
[4] Hlth Inst Carlos III, Ctr Biomed Res Network Resp Dis CIBERES, Madrid 28029, Spain
关键词
COVID-19; SARS-CoV-2; machine learning; cytokine release syndrome; tocilizumab; CRITICALLY-ILL PATIENTS; CLASSIFICATION; PHENOTYPES; INHIBITORS; MORTALITY; DISEASE;
D O I
10.3390/jcm11164729
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Among the IL-6 inhibitors, tocilizumab is the most widely used therapeutic option in patients with SARS-CoV-2-associated severe respiratory failure (SRF). The aim of our study was to provide evidence on predictors of poor outcome in patients with COVID-19 treated with tocilizumab, using machine learning (ML) techniques. We conducted a retrospective study, analyzing the clinical, laboratory and sociodemographic data of patients admitted for severe COVID-19 with SRF, treated with tocilizumab. The extreme gradient boost (XGB) method had the highest balanced accuracy (93.16%). The factors associated with a worse outcome of tocilizumab use in terms of mortality were: baseline situation at the start of tocilizumab treatment requiring invasive mechanical ventilation (IMV), elevated ferritin, lactate dehydrogenase (LDH) and glutamate-pyruvate transaminase (GPT), lymphopenia, and low PaFi [ratio between arterial oxygen pressure and inspired oxygen fraction (PaO2/FiO(2))] values. The factors associated with a worse outcome of tocilizumab use in terms of hospital stay were: baseline situation at the start of tocilizumab treatment requiring IMV or supplemental oxygen, elevated levels of ferritin, glutamate-oxaloacetate transaminase (GOT), GPT, C-reactive protein (CRP), LDH, lymphopenia, and low PaFi values. In our study focused on patients with severe COVID-19 treated with tocilizumab, the factors that were weighted most strongly in predicting worse clinical outcome were baseline status at the start of tocilizumab treatment requiring IMV and hyperferritinemia.
引用
收藏
页数:15
相关论文
共 65 条
[1]   Artificial Intelligence in the Fight Against COVID-19: Scoping Review [J].
Abd-Alrazaq, Alaa ;
Alajlani, Mohannad ;
Alhuwail, Dari ;
Schneider, Jens ;
Al-Kuwari, Saif ;
Shah, Zubair ;
Hamdi, Mounir ;
Househ, Mowafa .
JOURNAL OF MEDICAL INTERNET RESEARCH, 2020, 22 (12)
[2]   Artificial intelligence in clinical care amidst COVID-19 pandemic: A systematic review [J].
Adamidi, Eleni S. ;
Mitsis, Konstantinos ;
Nikita, Konstantina S. .
COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2021, 19 :2833-2850
[3]   Mortality Rates Among Hospitalized Patients With COVID-19 Infection Treated With Tocilizumab and Corticosteroids A Bayesian Reanalysis of a Previous Meta-analysis [J].
Albuquerque, Arthur M. ;
Tramujas, Lucas ;
Sewanan, Lorenzo R. ;
Williams, Donald R. ;
Brophy, James M. .
JAMA NETWORK OPEN, 2022, 5 (02)
[4]   2021 update of the EULAR points to consider on the use of immunomodulatory therapies in COVID-19 [J].
Alunno, Alessia ;
Najm, Aurelie ;
Machado, Pedro M. ;
Bertheussen, Heidi ;
Burmester, Gerd-Rudiger R. ;
Carubbi, Francesco ;
De Marco, Gabriele ;
Giacomelli, Roberto ;
Hermine, Olivier ;
Isaacs, John D. ;
Kone-Paut, Isabelle ;
Magro-Checa, Cesar ;
McInnes, Iain B. ;
Meroni, Pier Luigi ;
Quartuccio, Luca ;
Ramanan, A., V ;
Ramos-Casals, Manuel ;
Rodriguez Carrio, Javier ;
Schulze-Koops, Hendrik ;
Stamm, Tanja A. ;
Tas, Sander W. ;
Terrier, Benjamin ;
McGonagle, Dennis G. ;
Mariette, Xavier .
ANNALS OF THE RHEUMATIC DISEASES, 2022, 81 (01) :34-40
[5]   ESCMID COVID-19 living guidelines: drug treatment and clinical management [J].
Bartoletti, Michele ;
Azap, Ozlem ;
Barac, Aleksandra ;
Bussini, Linda ;
Ergonul, Onder ;
Krause, Robert ;
Ramon Pano-Pardo, Jose ;
Power, Nicholas R. ;
Sibani, Marcella ;
Szabo, Balint Gergely ;
Tsiodras, Sotirios ;
Verweij, Paul E. ;
Zollner-Schwetz, Ines ;
Rodriguez-Bano, Jesus .
CLINICAL MICROBIOLOGY AND INFECTION, 2022, 28 (02) :222-238
[6]   Imbalanced Host Response to SARS-CoV-2 Drives Development of COVID-19 [J].
Blanco-Melo, Daniel ;
Nilsson-Payant, Benjamin E. ;
Liu, Wen-Chun ;
Uhl, Skyler ;
Hoagland, Daisy ;
Moller, Rasmus ;
Jordan, Tristan X. ;
Oishi, Kohei ;
Panis, Maryline ;
Sachs, David ;
Wang, Taia T. ;
Schwartz, Robert E. ;
Lim, Jean K. ;
Albrecht, Randy A. ;
tenOever, Benjamin R. .
CELL, 2020, 181 (05) :1036-+
[7]   COVID Mortality Prediction with Machine Learning Methods: A Systematic Review and Critical Appraisal [J].
Bottino, Francesca ;
Tagliente, Emanuela ;
Pasquini, Luca ;
Di Napoli, Alberto ;
Lucignani, Martina ;
Figa-Talamanca, Lorenzo ;
Napolitano, Antonio .
JOURNAL OF PERSONALIZED MEDICINE, 2021, 11 (09)
[8]   Risk of Reactivation of Hepatitis B Virus (HBV) and Tuberculosis (TB) and Complications of Hepatitis C Virus (HCV) Following Tocilizumab Therapy: A Systematic Review to Inform Risk Assessment in the COVID-19 Era [J].
Campbell, Cori ;
Andersson, Monique I. ;
Ansari, M. Azim ;
Moswela, Olivia ;
Misbah, Siraj A. ;
Klenerman, Paul ;
Matthews, Philippa C. .
FRONTIERS IN MEDICINE, 2021, 8
[9]   Clinical course of severe patients with COVID-19 treated with tocilizumab: report from a cohort study in Spain [J].
Chamorro-de-Vega, Esther ;
Rodriguez-Gonzalez, Carmen-Guadalupe ;
Manrique-Rodriguez, Silvia ;
Lobato-Matilla, Elena ;
Garcia-Moreno, Felix ;
Olmedo, Maria ;
Correa-Rocha, Rafael ;
Valerio, Maricela ;
Aldamiz-Echevarria, Teresa ;
Machado, Marina ;
Sancho-Gonzalez, Milagros ;
Lopez-Bernaldo-de-Quiros, Juan Carlos ;
Ruiz-Briones, Paula ;
Romero-Jimenez, Rosa ;
Sarobe-Gonzalez, Camino ;
Gimenez-Manzorro, Alvaro ;
Collado-Borrell, Roberto ;
Fernandez-Llamazares, Cecilia M. ;
Revuelta-Herrero, Jose Luis ;
Somoza-Fernandez, Beatriz ;
Garcia-Sanchez, Sebastian ;
Taladriz-Sender, Irene ;
Bouza, Emilio ;
Herranz, Ana ;
Munoz, Patricia ;
Sanjurjo, Maria .
EXPERT REVIEW OF CLINICAL PHARMACOLOGY, 2021, 14 (02) :249-260
[10]   A New Hybrid XGBSVM Model: Application for Hypertensive Heart Disease [J].
Chang, Wenbing ;
Liu, Yinglai ;
Wu, Xueyi ;
Xiao, Yiyong ;
Zhou, Shenghan ;
Cao, Wen .
IEEE ACCESS, 2019, 7 :175248-175258