Nature of the largest cluster size distribution at the percolation threshold

被引:13
作者
Sen, P [1 ]
机构
[1] Univ Calcutta, Dept Phys, Kolkata 700009, W Bengal, India
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2001年 / 34卷 / 41期
关键词
D O I
10.1088/0305-4470/34/41/306
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Two distinct distribution functions P-sp(m) and P-ns(m) of the scaled largest cluster sizes m are obtained at the percolation threshold by numerical simulations, depending on the condition whether the lattice is actually spanned or not. With R(p(c)) the spanning probability, the total distribution of the largest cluster is given by P-tot(m) = R(p(c))P-sp(m) + (1 - R(p(c)))P-ns(m). The three distributions apparently have similar forms in three and four dimensions while in two dimensions, Ptot(m) does not exhibit a familiar form. By studying the first and second cumulants of the distribution functions, the different behaviour of P-tot(m) in different dimensions may be quantified.
引用
收藏
页码:8477 / 8483
页数:7
相关论文
共 13 条
[1]   Largest cluster in subcritical, percolation [J].
Bazant, MZ .
PHYSICAL REVIEW E, 2000, 62 (02) :1660-1669
[2]  
BAZANT MZ, UNPUB
[3]   THE FAILURE DISTRIBUTION IN PERCOLATION MODELS OF BREAKDOWN [J].
DUXBURY, PM ;
LEATH, PL .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (06) :L411-L415
[4]   THE CHEMICAL DISTANCE DISTRIBUTION IN PERCOLATION CLUSTERS [J].
HAVLIN, S ;
TRUS, B ;
WEISS, GH ;
BENAVRAHAM, D .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1985, 18 (05) :L247-L249
[5]   Renormalization group calculation of distribution functions: Structural properties for percolation clusters [J].
Hovi, JP ;
Aharony, A .
PHYSICAL REVIEW E, 1997, 56 (01) :172-184
[6]   An infinite number of effectively infinite clusters in critical percolation [J].
Jan, N ;
Stauffer, D ;
Aharony, A .
JOURNAL OF STATISTICAL PHYSICS, 1998, 92 (1-2) :325-330
[7]  
Kopelman R, 1976, PHYS REV B, V14, P3428
[8]   DISTRIBUTIONS AND MOMENTS OF STRUCTURAL-PROPERTIES FOR PERCOLATION CLUSTERS [J].
NEUMANN, AU ;
HAVLIN, S .
JOURNAL OF STATISTICAL PHYSICS, 1988, 52 (1-2) :203-236
[9]   A COMBINATION OF MONTE-CARLO AND TRANSFER-MATRIX METHODS TO STUDY 2D AND 3D PERCOLATION [J].
SALEUR, H ;
DERRIDA, B .
JOURNAL DE PHYSIQUE, 1985, 46 (07) :1043-1057
[10]   Nonlocal conservation in the coupling field: effect on critical dynamics [J].
Sen, P .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (09) :1623-1628