Nondestructive Detection of Codling Moth Infestation in Apples Using Pixel-Based NIR Hyperspectral Imaging with Machine Learning and Feature Selection

被引:17
|
作者
Ekramirad, Nader [1 ]
Khaled, Alfadhl Y. [1 ]
Doyle, Lauren E. [1 ]
Loeb, Julia R. [1 ]
Donohue, Kevin D. [2 ]
Villanueva, Raul T. [3 ]
Adedeji, Akinbode A. [1 ]
机构
[1] Univ Kentucky, Dept Biosyst & Agr Engn, Lexington, KY 40546 USA
[2] Univ Kentucky, Dept Elect & Comp Engn, Lexington, KY 40546 USA
[3] Univ Kentucky, Dept Entomol, Princeton, KY 42445 USA
基金
美国食品与农业研究所;
关键词
apples; codling moth; hyperspectral imaging; near-infrared; machine learning; feature selection; SOLUBLE SOLIDS CONTENT; RAMAN-SPECTROSCOPY; COMMON DEFECTS; FOOD; CLASSIFICATION; COMBINATION; QUALITY; VISION; LOAD;
D O I
10.3390/foods11010008
中图分类号
TS2 [食品工业];
学科分类号
0832 ;
摘要
Codling moth (CM) (Cydia pomonella L.), a devastating pest, creates a serious issue for apple production and marketing in apple-producing countries. Therefore, effective nondestructive early detection of external and internal defects in CM-infested apples could remarkably prevent postharvest losses and improve the quality of the final product. In this study, near-infrared (NIR) hyperspectral reflectance imaging in the wavelength range of 900-1700 nm was applied to detect CM infestation at the pixel level for three organic apple cultivars, namely Gala, Fuji and Granny Smith. An effective region of interest (ROI) acquisition procedure along with different machine learning and data processing methods were used to build robust and high accuracy classification models. Optimal wavelength selection was implemented using sequential stepwise selection methods to build multispectral imaging models for fast and effective classification purposes. The results showed that the infested and healthy samples were classified at pixel level with up to 97.4% total accuracy for validation dataset using a gradient tree boosting (GTB) ensemble classifier, among others. The feature selection algorithm obtained a maximum accuracy of 91.6% with only 22 selected wavelengths. These findings indicate the high potential of NIR hyperspectral imaging (HSI) in detecting and classifying latent CM infestation in apples of different cultivars.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Modeling for SSC and firmness detection of persimmon based on NIR hyperspectral imaging by sample partitioning and variables selection
    Wei, Xuan
    He, Jincheng
    Zheng, Shuhe
    Ye, Dapeng
    INFRARED PHYSICS & TECHNOLOGY, 2020, 105
  • [22] Nondestructive detection of pungent and numbing compounds in spicy hotpot seasoning with hyperspectral imaging and machine learning
    Zhang, Di
    Chen, Xu
    Lin, Zitao
    Lu, Minmin
    Yang, Wenhao
    Sun, Xiaoxia
    Battino, Maurizio
    Shi, Jiyong
    Huang, Xiaode
    Shi, Bolin
    Zou, Xiaobo
    FOOD CHEMISTRY, 2025, 469
  • [23] Estimation of Apple Leaf Nitrogen Concentration Using Hyperspectral Imaging-Based Wavelength Selection and Machine Learning
    Jang, Sihyeong
    Han, Jeomhwa
    Cho, Junggun
    Jung, Jaehoon
    Lee, Seulki
    Lee, Dongyong
    Kim, Jingook
    HORTICULTURAE, 2024, 10 (01)
  • [24] Pixel based bruise region extraction of apple using Vis-NIR hyperspectral imaging
    Che, Wenkai
    Sun, Laijun
    Zhang, Qian
    Tan, Wenyi
    Ye, Dandan
    Zhang, Dan
    Liu, Yangyang
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2018, 146 : 12 - 21
  • [25] An Approach to Feature Selection in Intrusion Detection Systems Using Machine Learning Algorithms
    Kavitha, G.
    Elango, N. M.
    INTERNATIONAL JOURNAL OF E-COLLABORATION, 2020, 16 (04) : 48 - 58
  • [26] Osteoporosis Detection Using Machine Learning Techniques and Feature Selection
    Iliou, Theodoros
    Anagnostopoulos, Christos-Nikolaos
    Anastassopoulos, George
    INTERNATIONAL JOURNAL ON ARTIFICIAL INTELLIGENCE TOOLS, 2014, 23 (05)
  • [27] Feature Selection Approach for Phishing Detection Based on Machine Learning
    Wei, Yi
    Sekiya, Yuji
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON APPLIED CYBER SECURITY (ACS) 2021, 2022, 378 : 61 - 70
  • [28] Phishing detection based on machine learning and feature selection methods
    Almseidin M.
    Abu Zuraiq A.M.
    Al-kasassbeh M.
    Alnidami N.
    International Journal of Interactive Mobile Technologies, 2019, 13 (12) : 71 - 183
  • [29] Nondestructive detection of Pleurotus geesteranus strain degradation based on micro-hyperspectral imaging and machine learning
    Wei, Xuan
    Liu, Shiyang
    Xie, Chuangyuan
    Fang, Wei
    Deng, Chanjuan
    Wen, Zhiqiang
    Ye, Dapeng
    Jie, Dengfei
    FRONTIERS IN PLANT SCIENCE, 2023, 14
  • [30] Android Malware Detection Using Machine Learning with Feature Selection Based on the Genetic Algorithm
    Lee, Jaehyeong
    Jang, Hyuk
    Ha, Sungmin
    Yoon, Yourim
    MATHEMATICS, 2021, 9 (21)