Diagonalized Cartesian products of S-prime graphs are S-prime

被引:3
作者
Hellmuth, Marc [1 ,2 ,3 ]
Ostermeier, Lydia [1 ,2 ,3 ]
Stadler, Peter F. [1 ,2 ,3 ,4 ,5 ,6 ]
机构
[1] Univ Leipzig, Dept Comp Sci, Bioinformat Grp, D-04107 Leipzig, Germany
[2] Univ Leipzig, Interdisciplinary Ctr Bioinformat, D-04107 Leipzig, Germany
[3] Max Planck Inst Math Sci, D-04103 Leipzig, Germany
[4] Fraunhofer Inst Zelltherapie & Immunol, D-04103 Leipzig, Germany
[5] Univ Vienna, Dept Theoret Chem, A-1090 Vienna, Austria
[6] Santa Fe Inst, Santa Fe, NM 87501 USA
关键词
S-prime; Diagonalized Cartesian product; Path-k-coloring; SUBGRAPHS;
D O I
10.1016/j.disc.2011.03.033
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A graph is said to be S-prime if, whenever it is a subgraph of a nontrivial Cartesian product graph, it is a subgraph of one of the factors. A diagonalized Cartesian product is obtained from a Cartesian product graph by connecting two vertices of maximal distance by an additional edge. We show there that a diagonalized product of S-prime graphs is again S-prime. Klavzar et al. [S. Klavzar, A. Lipovec, M. Petkovsek, On subgraphs of Cartesian product graphs, Discrete Math. 244 (2002) 223-230] proved that a graph is S-prime if and only if it admits a nontrivial path-k-coloring. We derive here a characterization of all path-k-colorings of Cartesian products of S-prime graphs. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:74 / 80
页数:7
相关论文
共 10 条
[1]   On subgraphs of Cartesian product graphs and S-primeness [J].
Bresar, B .
DISCRETE MATHEMATICS, 2004, 282 (1-3) :43-52
[2]  
HELLMUTH M, 2010, THESIS U LEIPZIG
[3]   A local prime factor decomposition algorithm [J].
Hellmuth, Marc .
DISCRETE MATHEMATICS, 2011, 311 (12) :944-965
[4]  
Imrich W, 2000, WIL INT S D
[5]  
Imrich Wilfried, 2008, Topics in graph theory: graphs and their cartesian product
[6]   Characterizing subgraphs of Hamming graphs [J].
Klavzar, S ;
Peterin, I .
JOURNAL OF GRAPH THEORY, 2005, 49 (04) :302-312
[7]   On subgraphs of Cartesian product graphs [J].
Klavzar, S ;
Lipovec, A ;
Petkovsek, M .
DISCRETE MATHEMATICS, 2002, 244 (1-3) :223-230
[8]   A NEW CONCEPT OF PRIMENESS IN GRAPHS [J].
LAMPREY, RH ;
BARNES, BH .
NETWORKS, 1981, 11 (03) :279-284
[9]  
LAMPREY RH, 1995, C NUMER, V109, P117
[10]  
Sabidussi G., 1974, C MATH SOC JANOS BOL, P1199