A new short-term wind speed forecasting method based on fine-tuned LSTM neural network and optimal input sets

被引:222
|
作者
Memarzadeh, Gholamreza [1 ]
Keynia, Farshid [2 ]
机构
[1] Grad Univ Adv Technol, Dept Power & Control Engn, Kerman, Iran
[2] Grad Univ Adv Technol, Inst Sci & High Technol & Environm Sci, Dept Energy Management & Optimizat, Kerman, Iran
关键词
Wind speed forecasting; Wavelet transform; Feature selection; Crow search algorithm; Long short term memory; Neural network; EMPIRICAL MODE DECOMPOSITION; TIME-SERIES; MULTIOBJECTIVE OPTIMIZATION; WAVELET PACKET; PREDICTION; ALGORITHM; SYSTEM; ENSEMBLE; STRATEGY; LOAD;
D O I
10.1016/j.enconman.2020.112824
中图分类号
O414.1 [热力学];
学科分类号
摘要
In recent years, clean energies, such as wind power have been developed rapidly. Especially, wind power generation becomes a significant source of energy in some power grids. On the other hand, based on the uncertain and non-convex behavior of wind speed, wind power generation forecasting and scheduling may be very difficult. In this paper, to improve the accuracy of forecasting the short-term wind speed, a hybrid wind speed forecasting model has been proposed based on four modules: crow search algorithm (CSA), wavelet transform (WT), Feature selection (FS) based on entropy and mutual information (MI), and deep learning time series prediction based on Long Short Term Memory neural networks (LSTM). The proposed wind speed forecasting strategy is applied to real-life data from Sotavento that is located in the south-west of Europe, in Galicia, Spain, and Kerman that is located in the Middle East, in the southeast of Iran. The presented numerical results demonstrate the efficiency of the proposed method, compared to some other existing wind speed forecasting methods.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] A combined model for short-term wind speed forecasting based on empirical mode decomposition, feature selection, support vector regression and cross- validated lasso
    Wang, Tao
    PEERJ COMPUTER SCIENCE, 2021, 7 : 1 - 23
  • [42] Short-term wind speed forecasting based on the Jaya-SVM model
    Liu, Mingshuai
    Cao, Zheming
    Zhang, Jing
    Wang, Long
    Huang, Chao
    Luo, Xiong
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2020, 121
  • [43] Short-Term Probabilistic Forecasting Method for Wind Speed Combining Long Short-Term Memory and Gaussian Mixture Model
    He, Xuhui
    Lei, Zhihao
    Jing, Haiquan
    Zhong, Rendong
    ATMOSPHERE, 2023, 14 (04)
  • [44] Short-term Wind Power Forecasting Based on Spatial Correlation and Artificial Neural Network
    Chen, Qin
    Folly, Komla
    2020 INTERNATIONAL SAUPEC/ROBMECH/PRASA CONFERENCE, 2020, : 208 - 213
  • [45] A multiobjective optimization-based neural network model for short-term replenishment forecasting in fashion industry
    Du, Wei
    Leung, Sunney Yung Sun
    Kwong, Chun Kit
    NEUROCOMPUTING, 2015, 151 : 342 - 353
  • [46] Short-term wind speed forecasting based on two-stage preprocessing method, sparrow search algorithm and long short-term memory neural network
    Ai, Xueyi
    Li, Shijia
    Xu, Haoxuan
    ENERGY REPORTS, 2022, 8 : 14997 - 15010
  • [47] Wind turbine short-term power forecasting method based on hybrid probabilistic neural network
    Deng, Jiewen
    Xiao, Zhao
    Zhao, Qiancheng
    Zhan, Jun
    Tao, Jie
    Liu, Minghua
    Song, Dongran
    ENERGY, 2024, 313
  • [48] Short-Term Photovoltaic Power Forecasting Using an LSTM Neural Network
    Hossain, Mohammad Safayet
    Mahmood, Hisham
    2020 IEEE POWER & ENERGY SOCIETY INNOVATIVE SMART GRID TECHNOLOGIES CONFERENCE (ISGT), 2020,
  • [49] Short-Term Wind Speed Forecasting Based on Data Preprocessing and Improved Hybrid Prediction Network
    Chen, Gonggui
    Li, Lijun
    Qin, Feng
    2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 734 - 738
  • [50] Application of long short-term memory (LSTM) neural network based on deep learning for electricity energy consumption forecasting
    Bilgili, Mehmet
    Arslan, Niyazi
    Sekertekin, Aliihsan
    Yasar, Abdulkadir
    TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES, 2022, 30 (01) : 140 - 157