A new short-term wind speed forecasting method based on fine-tuned LSTM neural network and optimal input sets

被引:222
|
作者
Memarzadeh, Gholamreza [1 ]
Keynia, Farshid [2 ]
机构
[1] Grad Univ Adv Technol, Dept Power & Control Engn, Kerman, Iran
[2] Grad Univ Adv Technol, Inst Sci & High Technol & Environm Sci, Dept Energy Management & Optimizat, Kerman, Iran
关键词
Wind speed forecasting; Wavelet transform; Feature selection; Crow search algorithm; Long short term memory; Neural network; EMPIRICAL MODE DECOMPOSITION; TIME-SERIES; MULTIOBJECTIVE OPTIMIZATION; WAVELET PACKET; PREDICTION; ALGORITHM; SYSTEM; ENSEMBLE; STRATEGY; LOAD;
D O I
10.1016/j.enconman.2020.112824
中图分类号
O414.1 [热力学];
学科分类号
摘要
In recent years, clean energies, such as wind power have been developed rapidly. Especially, wind power generation becomes a significant source of energy in some power grids. On the other hand, based on the uncertain and non-convex behavior of wind speed, wind power generation forecasting and scheduling may be very difficult. In this paper, to improve the accuracy of forecasting the short-term wind speed, a hybrid wind speed forecasting model has been proposed based on four modules: crow search algorithm (CSA), wavelet transform (WT), Feature selection (FS) based on entropy and mutual information (MI), and deep learning time series prediction based on Long Short Term Memory neural networks (LSTM). The proposed wind speed forecasting strategy is applied to real-life data from Sotavento that is located in the south-west of Europe, in Galicia, Spain, and Kerman that is located in the Middle East, in the southeast of Iran. The presented numerical results demonstrate the efficiency of the proposed method, compared to some other existing wind speed forecasting methods.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Short-term wind speed forecasting based on long short-term memory and improved BP neural network
    Chen, Gonggui
    Tang, Bangrui
    Zeng, Xianjun
    Zhou, Ping
    Kang, Peng
    Long, Hongyu
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2022, 134
  • [2] A Hybrid Ultra-Short-Term and Short-Term Wind Speed Forecasting Method Based on CEEMDAN and GA-BPNN
    Shang, Yi
    Miao, Lijuan
    Shan, Yunpeng
    Gnyawali, Kaushal Raj
    Zhang, Jing
    Kattel, Giri
    WEATHER AND FORECASTING, 2022, 37 (04) : 415 - 428
  • [3] Arctic short-term wind speed forecasting based on CNN-LSTM model with CEEMDAN
    Li, Qingyang
    Wang, Guosong
    Wu, Xinrong
    Gao, Zhigang
    Dan, Bo
    ENERGY, 2024, 299
  • [4] Evolving long short-term memory neural network for wind speed forecasting
    Huang, Cong
    Karimi, Hamid Reza
    Mei, Peng
    Yang, Daoguang
    Shi, Quan
    INFORMATION SCIENCES, 2023, 632 : 390 - 410
  • [5] Hybrid forecasting system based on data area division and deep learning neural network for short-term wind speed forecasting
    Liu, Zhuoyi
    Hara, Ryoichi
    Kita, Hiroyuki
    ENERGY CONVERSION AND MANAGEMENT, 2021, 238 (238)
  • [6] Variable Support Segment-Based Short-Term Wind Speed Forecasting
    Zhang, Ke
    Li, Xiao
    Su, Jie
    ENERGIES, 2022, 15 (11)
  • [7] A new hybrid iterative method for short-term wind speed forecasting
    Amjady, Nima
    Keynia, Farshid
    Zareipour, Hamidreza
    EUROPEAN TRANSACTIONS ON ELECTRICAL POWER, 2011, 21 (01): : 581 - 595
  • [8] A Hybrid Neural Network Model for Short-Term Wind Speed Forecasting
    Lv, Shengxiang
    Wang, Lin
    Wang, Sirui
    ENERGIES, 2023, 16 (04)
  • [9] Composite quantile regression extreme learning machine with feature selection for short-term wind speed forecasting: A new approach
    Zheng, Weiqin
    Peng, Xiangang
    Lu, Di
    Zhang, Dan
    Liu, Yi
    Lin, Zhehao
    Lin, Lixiang
    ENERGY CONVERSION AND MANAGEMENT, 2017, 151 : 737 - 752
  • [10] Using Random Forests to Select Optimal Input Variables for Short-Term Wind Speed Forecasting Models
    Wang, Hui
    Sun, Jingxuan
    Sun, Jianbo
    Wang, Jilong
    ENERGIES, 2017, 10 (10)