Fractional diffusion equation with a generalized Riemann-Liouville time fractional derivative

被引:93
作者
Sandev, Trifce [1 ]
Metzler, Ralf [2 ,3 ]
Tomovski, Zivorad [4 ]
机构
[1] Radiat Safety Directorate, Skovde 1020, Sweden
[2] Tech Univ Munich, Dept Phys, D-85747 Garching, Germany
[3] Tampere Univ Technol, Dept Phys, FI-33101 Tampere, Finland
[4] Univ St Cyril & Methudius, Inst Math, Fac Nat Sci & Math, Skopje 100, North Macedonia
基金
芬兰科学院;
关键词
MITTAG-LEFFLER FUNCTION; ANOMALOUS DIFFUSION; DYNAMICS; RELAXATION;
D O I
10.1088/1751-8113/44/25/255203
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, the solution of a fractional diffusion equation with a Hilfer-generalized Riemann-Liouville time fractional derivative is obtained in terms of Mittag-Leffler-type functions and Fox's H-function. The considered equation represents a quite general extension of the classical diffusion (heat conduction) equation. The methods of separation of variables, Laplace transform, and analysis of the Sturm-Liouville problem are used to solve the fractional diffusion equation defined in a bounded domain. By using the Fourier-Laplace transform method, it is shown that the fundamental solution of the fractional diffusion equation with a generalized Riemann-Liouville time fractional derivative defined in the infinite domain can be expressed via Fox's H-function. It is shown that the corresponding solutions of the diffusion equations with time fractional derivative in the Caputo and Riemann-Liouville sense are special cases of those diffusion equations with the Hilfer-generalized Riemann-Liouville time fractional derivative. The asymptotic behaviour of the solutions are found for large values of the spatial variable. The fractional moments of the fundamental solution of the fractional diffusion equation are obtained. The obtained results are relevant in the context of glass relaxation and aquifer problems.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] Eigenfunctions and Fundamental Solutions of the Fractional Laplace and Dirac Operators: The Riemann-Liouville Case
    M. Ferreira
    N. Vieira
    Complex Analysis and Operator Theory, 2016, 10 : 1081 - 1100
  • [32] Extending the D'alembert solution to space-time Modified Riemann-Liouville fractional wave equations
    Godinho, Cresus F. L.
    Weberszpil, J.
    Helayel-Neto, J. A.
    CHAOS SOLITONS & FRACTALS, 2012, 45 (06) : 765 - 771
  • [33] Fractional Prabhakar Derivative in Diffusion Equation with Non-Static Stochastic Resetting
    dos Santos, Maike A. F.
    PHYSICS, 2019, 1 (01): : 40 - 58
  • [34] Eigenfunctions and Fundamental Solutions of the Fractional Laplace and Dirac Operators: The Riemann-Liouville Case
    Ferreira, M.
    Vieira, N.
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2016, 10 (05) : 1081 - 1100
  • [35] Some new results for ψ - Hilfer fractional pantograph-type differential equation depending on ψ - Riemann-Liouville integral
    Foukrach, Djamal
    Bouriah, Soufyane
    Benchohra, Mouffak
    Karapinar, Erdal
    JOURNAL OF ANALYSIS, 2022, 30 (01) : 195 - 219
  • [36] Stability and synchronization for Riemann-Liouville fractional-order time-delayed inertial neural networks
    Gu, Yajuan
    Wang, Hu
    Yu, Yongguang
    NEUROCOMPUTING, 2019, 340 : 270 - 280
  • [37] Riemann-Liouville fractional-order pantograph differential equation constrained by nonlocal and weighted pantograph integral equations
    El-Sayed, Ahmed M. A.
    El-Sayed, Wagdy G.
    Msaik, Kheria M. O.
    Ebead, Hanaa R.
    AIMS MATHEMATICS, 2025, 10 (03): : 4970 - 4991
  • [38] INVERSE COEFFICIENT PROBLEM FOR A PARTIAL DIFFERENTIAL EQUATION WITH MULTI-TERM ORDERS FRACTIONAL RIEMANN-LIOUVILLE DERIVATIVES
    Durdiev, D. K.
    Hasanov, I. I.
    VESTNIK UDMURTSKOGO UNIVERSITETA-MATEMATIKA MEKHANIKA KOMPYUTERNYE NAUKI, 2024, 34 (03): : 321 - 338
  • [39] Generalized fractional diffusion equation with arbitrary time varying diffusivity
    Tawfik, Ashraf M.
    Abdelhamid, Hamdi M.
    APPLIED MATHEMATICS AND COMPUTATION, 2021, 410
  • [40] AN INVERSE SOURCE PROBLEM FOR A GENERALIZED TIME FRACTIONAL DIFFUSION EQUATION
    Faizi, R.
    Atmania, R.
    EURASIAN JOURNAL OF MATHEMATICAL AND COMPUTER APPLICATIONS, 2022, 10 (01): : 26 - 39