Fractional diffusion equation with a generalized Riemann-Liouville time fractional derivative

被引:93
|
作者
Sandev, Trifce [1 ]
Metzler, Ralf [2 ,3 ]
Tomovski, Zivorad [4 ]
机构
[1] Radiat Safety Directorate, Skovde 1020, Sweden
[2] Tech Univ Munich, Dept Phys, D-85747 Garching, Germany
[3] Tampere Univ Technol, Dept Phys, FI-33101 Tampere, Finland
[4] Univ St Cyril & Methudius, Inst Math, Fac Nat Sci & Math, Skopje 100, North Macedonia
基金
芬兰科学院;
关键词
MITTAG-LEFFLER FUNCTION; ANOMALOUS DIFFUSION; DYNAMICS; RELAXATION;
D O I
10.1088/1751-8113/44/25/255203
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, the solution of a fractional diffusion equation with a Hilfer-generalized Riemann-Liouville time fractional derivative is obtained in terms of Mittag-Leffler-type functions and Fox's H-function. The considered equation represents a quite general extension of the classical diffusion (heat conduction) equation. The methods of separation of variables, Laplace transform, and analysis of the Sturm-Liouville problem are used to solve the fractional diffusion equation defined in a bounded domain. By using the Fourier-Laplace transform method, it is shown that the fundamental solution of the fractional diffusion equation with a generalized Riemann-Liouville time fractional derivative defined in the infinite domain can be expressed via Fox's H-function. It is shown that the corresponding solutions of the diffusion equations with time fractional derivative in the Caputo and Riemann-Liouville sense are special cases of those diffusion equations with the Hilfer-generalized Riemann-Liouville time fractional derivative. The asymptotic behaviour of the solutions are found for large values of the spatial variable. The fractional moments of the fundamental solution of the fractional diffusion equation are obtained. The obtained results are relevant in the context of glass relaxation and aquifer problems.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Stability of fractional order of time nonlinear fractional diffusion equation with Riemann-Liouville derivative
    Le Dinh Long
    Ho Duy Binh
    Kumar, Devendra
    Nguyen Hoang Luc
    Nguyen Huu Can
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (10) : 6194 - 6216
  • [2] Fractional Ince equation with a Riemann-Liouville fractional derivative
    Parra-Hinojosa, Alfredo
    Gutierrez-Vega, Julio C.
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (22) : 10695 - 10705
  • [3] Fractional Langevin equation and Riemann-Liouville fractional derivative
    Kwok Sau Fa
    The European Physical Journal E, 2007, 24 : 139 - 143
  • [4] Determining of a Space Dependent Coefficient of Fractional Diffusion Equation with the Generalized Riemann-Liouville Time Derivative
    Durdiev, D. K.
    Turdiev, H. H.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2024, 45 (02) : 648 - 662
  • [5] Fractional langevin equation and riemann-liouville fractional derivative
    Fa, Kwok Sau
    EUROPEAN PHYSICAL JOURNAL E, 2007, 24 (02): : 139 - 143
  • [6] On a backward problem for fractional diffusion equation with Riemann-Liouville derivative
    Nguyen Huy Tuan
    Nguyen Hoang Tuan
    Baleanu, Dumitru
    Tran Ngoc Thach
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (03) : 1292 - 1312
  • [7] The Riemann-Liouville fractional derivative for Ambartsumian equation
    El-Zahar, E. R.
    Alotaibi, A. M.
    Ebaid, A.
    Aljohani, A. F.
    Gomez Aguilar, J. F.
    RESULTS IN PHYSICS, 2020, 19
  • [8] The Riemann-Liouville fractional derivative for Ambartsumian equation
    El-Zahar, E. R.
    Alotaibi, A. M.
    Ebaid, A.
    Aljohani, A. F.
    Gomez Aguilar, J. F.
    RESULTS IN PHYSICS, 2020, 19
  • [9] Inverse Coefficient Problem for Fractional Wave Equation with the Generalized Riemann-Liouville Time Derivative
    Durdiev, Durdimurod
    Turdiev, Halim
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2023,
  • [10] Identifying inverse source for fractional diffusion equation with Riemann-Liouville derivative
    Nguyen Huy Tuan
    Zhou, Yong
    Le Dinh Long
    Nguyen Huu Can
    COMPUTATIONAL & APPLIED MATHEMATICS, 2020, 39 (02):