Performance analysis of a PID fractional order control in a differential mobile robot

被引:2
作者
Vazquez, Ulises [1 ]
Gonzalez-Sierra, Jaime [2 ]
Fernandez-Anaya, Guillermo [3 ]
Gamaliel Hernandez-Martinez, Eduardo [4 ]
机构
[1] Tecnol Nacl Mexico IT La Laguna, Blvd Revoluc & Av Inst Tecnol La Laguna S-N, Torreon 27000, Coahuila, Mexico
[2] Univ Politecn Pachuca, Carretera Ciudad Sahagun Pachuca Km 20, Zempoala 43830, Hidalgo, Mexico
[3] Univ Iberoamer, Dept Fis & Matemat, Prolongac Paseo Reforma 880, Ciudad De Mexico 01219, Mexico
[4] Univ Iberoamer, Ist Invest Aplicada & Tecnol, Prolongac Paseo Reforma 880, Ciudad De Mexico 01219, Mexico
来源
REVISTA IBEROAMERICANA DE AUTOMATICA E INFORMATICA INDUSTRIAL | 2022年 / 19卷 / 01期
关键词
Fractional control; differential-drive robot; tracking control; PID control; STABILITY ANALYSIS; SYSTEMS; DESIGN;
D O I
10.4995/riai.2021.15036
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This work deals with the tracking trajectory problem for a differential-drive mobile robot taking into account a dynamic extension from the kinematic model and, controlling a front point located at a certain distance perpendicular to the mid-axis of the wheels. Two controls are proposed, a PID fractional order controller ((PID mu)-D-delta) and a PD fractional order controller (PD mu), both based on the tracking errors. The proposed controllers are obtained by means of the input-output linearization technique. On the other hand, the controller fractional terms are based on the Caputo's operator. Numerical simulations with different fractional orders are presented and compared with the integer order PID controller, showing the variations that occurred when changing only the controller order.
引用
收藏
页码:74 / 83
页数:10
相关论文
共 35 条
[1]  
Al-Araji AS., 2017, ENG TECHNOL J, V35, P289
[2]   Design of Fractional-Order Controller for Trajectory Tracking Control of a Non-holonomic Autonomous Ground Vehicle [J].
Al-Mayyahi A. ;
Wang W. ;
Birch P. .
Journal of Control, Automation and Electrical Systems, 2016, 27 (01) :29-42
[3]  
Betourne A, 1996, IEEE INT CONF ROBOT, P2810, DOI 10.1109/ROBOT.1996.506588
[4]   Stability analysis of continuous-time linear systems consisting of n subsystems with different fractional orders [J].
Buslowicz, M. .
BULLETIN OF THE POLISH ACADEMY OF SCIENCES-TECHNICAL SCIENCES, 2012, 60 (02) :279-284
[5]   Frequency Domain Method for Stability Analysis of Linear Continuous-Time State-Space Systems with Double Fractional Orders [J].
Buslowicz, Mikolaj .
ADVANCES IN THE THEORY AND APPLICATIONS OF NON-INTEGER ORDER SYSTEMS, 2013, 257 :31-39
[6]   Structural properties and classification of kinematic and dynamic models of wheeled mobile robots [J].
Campion, G ;
Bastin, G ;
DAndreaNovel, B .
IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, 1996, 12 (01) :47-62
[7]   Control of a nonholonomic mobile robot using neural networks [J].
Fierro, R ;
Lewis, FL .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1998, 9 (04) :589-600
[8]  
Kanjanawanishkul Kiattisin, 2009, 2009 IEEE International Conference on Robotics and Automation (ICRA), P3341, DOI 10.1109/ROBOT.2009.5152217
[9]  
Khalil H.K., 2002, NONLINEAR SYSTEMS
[10]  
Martínez EA, 2019, IEEE DECIS CONTR P, P5799, DOI [10.1109/cdc40024.2019.9029954, 10.1109/CDC40024.2019.9029954]