Construction of Fe3O4@FeS2@C@MoS2 Z-scheme heterojunction with sandwich-like structure: Enhanced catalytic performance in photo-Fenton reaction and mechanism insight

被引:28
|
作者
Deng, Xianhe [1 ]
Yang, Yang [3 ]
Mei, Yuqing [1 ]
Li, Jiaqi [1 ]
Guo, Changliang [1 ]
Yao, Tongjie [3 ]
Guo, Yongmei [2 ]
Xin, Baifu [1 ]
Wu, Jie [1 ]
机构
[1] Heilongjiang Univ, Sch Chem & Mat Sci, Key Lab Funct Inorgan Mat Chem, Minist Educ, Harbin, Peoples R China
[2] Minjiang Univ, Fujian Key Lab Novel Funct Text Fibers & Mat, Fuzhou 350108, Peoples R China
[3] Harbin Inst Technol, Sch Chem & Chem Engn, Harbin, Peoples R China
基金
中国国家自然科学基金;
关键词
Z-scheme heterojunction; Sandwich-like structure; Photo-Fenton reaction; Inner electric field; Magnetic property; HIGHLY EFFICIENT; HYDROGEN EVOLUTION; ORGANIC FRAMEWORKS; CARBON NITRIDE; WATER; DEGRADATION; MOS2; PHOTOCATALYST; NANOPARTICLES; PHOSPHORUS;
D O I
10.1016/j.jallcom.2021.163437
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Herein, the sandwich-like Fe3O4@FeS2@C@MoS2 composite was prepared via coating MoS2 shell on the surface of core/shell Fe3O4@C composite. During the coating process, Fe3O4 was partly sulfurized to FeS2, whose energy band was well-matched with that of MoS2 for a Z-scheme heterojunction. The residual Fe3O4 ensured the rapid separation of heterojunction by magnet. In photo-Fenton reaction, 81.5% of tetracycline was degraded within 40 min, which was higher than the sum of degradation efficiency of Fenton reaction and photocatalytic reaction. 93.6% of the degradation efficiency in the 1st cycle was still maintained after 5 cycles. In mechanism study, the sources of (OH)-O-center dot, O-center dot(2)-, O-1(2) and h(+) were carefully traced, and the contributions of these radicals followed the order: (OHsurf)-O-center dot > O-center dot(2)- > O-1(2) > h(+) >(OHfree)-O-center dot. An inner electric field was built at the interface by analyzing the energy band and work functions, which driven the charge carriers transfer followed a Z-scheme path. The findings in this manuscript were beneficial for designing catalysts with high photo-Fenton activity. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] A nanoreactor with Z-scheme FeS2/MoS2 heterojunctions encapsulated inside the carbon capsule: Insight on preparation method and enhanced performance in photo-Fenton reaction
    Deng, Xianhe
    Hui, Wanting
    Guan, Yina
    Zhang, Yanqiu
    Zhao, Tingting
    Guo, Changliang
    Xin, Baifu
    Yang, Yang
    Yao, Tongjie
    Wu, Jie
    CHEMICAL ENGINEERING JOURNAL, 2022, 450
  • [2] Direct Z-scheme Fe2(MoO4)3/MoO3 heterojunction: Photo-Fenton reaction and mechanism comprehension
    Zhu, Yufeng
    Ma, Shouchun
    Yang, Yang
    Li, Jiaqi
    Mei, Yuqing
    Liu, Li
    Yao, Tongjie
    Wu, Jie
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 873
  • [3] Z-scheme Fe@Fe2O3/BiOBr heterojunction with efficient carrier separation for enhanced heterogeneous photo-Fenton activity of tetracycline degradation: Fe2+ regeneration, mechanism insight and toxicity evaluation
    Wang, Xiangyu
    Lin, Xian
    Wu, Xi
    Lynch, Iseult
    ENVIRONMENTAL RESEARCH, 2024, 252
  • [4] Construction of flower-like MoS2/Fe3O4/rGO composite with enhanced photo-Fenton like catalyst performance
    Mu, Dongzhao
    Chen, Zhe
    Shi, Hongfei
    Tan, Naidi
    RSC ADVANCES, 2018, 8 (64): : 36625 - 36631
  • [5] Z-scheme NiFe LDH/Bi4O5I2 heterojunction for photo-Fenton oxidation of tetracycline
    Zhu, Chenxi
    Wang, Yingjun
    Qiu, Longyu
    Yang, Weiwei
    Yu, Yongsheng
    Li, Jiaming
    Liu, Yequn
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 944
  • [6] Construction of recyclable Z-scheme MoS2/Fe/Bi2MoO6 heterojunctions for efficient photo-Fenton degradation performance
    Zhang, Rong
    Liu, Zhuannian
    JOURNAL OF MOLECULAR STRUCTURE, 2024, 1309
  • [7] An oxygen-vacancy rich ZnFe2O4/BiOI/AgI heterojunction for enhanced photocatalytic and photo-Fenton performance via double Z-scheme structure
    Zhao, Wenhua
    Wei, Zhiqiang
    Li, Chao
    Ding, Meijie
    MATERIALS RESEARCH BULLETIN, 2024, 169
  • [8] Construction of layered hollow Fe3O4/Fe1-xS @MoS2 composite with enhanced photo-Fenton and adsorption performance
    Li, Juping
    Zhang, Xiao
    Wang, Tao
    Zhao, Yue
    Song, Tong
    Zhang, Lina
    Cheng, Xin
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2020, 8 (03):
  • [9] Fabrication of Z-Scheme Fe2O3-MoS2-Cu2O Ternary Nanofilm with Significantly Enhanced Photoelectrocatalytic Performance
    Cong, Yanqing
    Ge, Yaohua
    Zhang, Tongtong
    Wang, Qi
    Shao, Meiling
    Zhang, Yi
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2018, 57 (03) : 881 - 890
  • [10] Highly Efficient Photo-Fenton Ag/Fe2O3/BiOI Z-Scheme Heterojunction for the Promoted Degradation of Tetracycline
    Zheng, Jingjing
    Liu, Guoxia
    Jiao, Zhengbo
    NANOMATERIALS, 2023, 13 (13)