Polynomial Decay for the Timoshenko System with Dynamical Boundary Conditions

被引:1
作者
Khemmoudj, Ammar [1 ]
Kechiche, Naouel [1 ]
机构
[1] Univ Sci & Technol Houari Boumedienne, Fac Math, Lab SDG, POB 32, Algiers 16111, Algeria
关键词
Timoshenko system; Polynomial rate of decay; Dynamic boundary condition; Semigroup theory; Frequency domain method; ENERGY DECAY; ASYMPTOTIC-BEHAVIOR; EXPONENTIAL STABILITY; BEAM; CONTROLLABILITY; STABILIZATION; CATTANEO; HISTORY; THERMOELASTICITY; EQUATION;
D O I
10.1007/s40840-021-01226-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this study, we show that the solution of Timoshenko systems with past history and dynamical boundary condition decays polynomially in the case where the wave speeds of equations are different. Our method is based on the semigroup technique and the contraction argument of frequency domain method.
引用
收藏
页码:1195 / 1212
页数:18
相关论文
共 45 条
  • [11] Optimal polynomial decay of functions and operator semigroups
    Borichev, Alexander
    Tomilov, Yuri
    [J]. MATHEMATISCHE ANNALEN, 2010, 347 (02) : 455 - 478
  • [12] Uniform decay rates for the energy of Timoshenko system with the arbitrary speeds of propagation and localized nonlinear damping
    Cavalcanti, M. M.
    Domingos Cavalcanti, V. N.
    Falco Nascimento, F. A.
    Lasiecka, I.
    Rodrigues, J. H.
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2014, 65 (06): : 1189 - 1206
  • [13] DAFERMOS CM, 1970, ARCH RATION MECH AN, V37, P297
  • [14] The Timoshenko system with history and Cattaneo law
    Fatori, Luci Harue
    Monteiro, Rodrigo Nunes
    Fernandez Sare, Hugo D.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2014, 228 : 128 - 140
  • [15] Fernndez Sare HD., 2009, ADV DIFFER EQU-NY, V13, P733
  • [16] General energy decay estimates of Timoshenko systems with frictional versus viscoelastic damping
    Guesmia, Aissa
    Messaoudi, Salim A.
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2009, 32 (16) : 2102 - 2122
  • [17] Global existence and stability results for a nonlinear Timoshenko system of thermoelasticity of type III with delay
    Hao, Jianghao
    Wei, Jing
    [J]. BOUNDARY VALUE PROBLEMS, 2018,
  • [18] Null-controllability of some reaction-diffusion systems with one control force
    Khodja, Farid Ammar
    Benabdallah, Assia
    Dupaix, Cedric
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 320 (02) : 928 - 943
  • [19] BOUNDARY CONTROL OF THE TIMOSHENKO BEAM
    KIM, JU
    RENARDY, Y
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1987, 25 (06) : 1417 - 1429
  • [20] Liu Z., 1999, CHAPMAN HALLCRC RES, V398