Polynomial Decay for the Timoshenko System with Dynamical Boundary Conditions

被引:1
作者
Khemmoudj, Ammar [1 ]
Kechiche, Naouel [1 ]
机构
[1] Univ Sci & Technol Houari Boumedienne, Fac Math, Lab SDG, POB 32, Algiers 16111, Algeria
关键词
Timoshenko system; Polynomial rate of decay; Dynamic boundary condition; Semigroup theory; Frequency domain method; ENERGY DECAY; ASYMPTOTIC-BEHAVIOR; EXPONENTIAL STABILITY; BEAM; CONTROLLABILITY; STABILIZATION; CATTANEO; HISTORY; THERMOELASTICITY; EQUATION;
D O I
10.1007/s40840-021-01226-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this study, we show that the solution of Timoshenko systems with past history and dynamical boundary condition decays polynomially in the case where the wave speeds of equations are different. Our method is based on the semigroup technique and the contraction argument of frequency domain method.
引用
收藏
页码:1195 / 1212
页数:18
相关论文
共 45 条
  • [1] Stability results of a distributed problem involving Bresse system with history and/or Cattaneo law under fully Dirichlet or mixed boundary conditions
    Abdallah, Farah
    Ghader, Mouhammad
    Wehbe, Ali
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (05) : 1876 - 1907
  • [2] A two-level energy method for indirect boundary observability and controllability of weakly coupled hyperbolic systems
    Alabau-Boussouira, F
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2003, 42 (03) : 871 - 906
  • [3] Asymptotic behavior for Timoshenko beams subject to a single nonlinear feedback control
    Alabau-Boussouira, Fatiha
    [J]. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2007, 14 (5-6): : 643 - 669
  • [4] Stability to 1-D thermoelastic Timoshenko beam acting on shear force
    Almeida Junior, Dilberto da S.
    Santos, M. L.
    Munoz Rivera, J. E.
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2014, 65 (06): : 1233 - 1249
  • [5] Alves M., 2015, EXPONENTIAL STABILIT
  • [6] The asymptotic behavior of the linear transmission problem in viscoelasticity
    Alves, Margareth
    Rivera, Jaime Munoz
    Sepulveda, Mauricio
    Vera Villagran, Octavio
    Zegarra Garay, Maria
    [J]. MATHEMATISCHE NACHRICHTEN, 2014, 287 (5-6) : 483 - 497
  • [7] Energy decay for Timoshenko systems of memory type
    Ammar-Khodja, F
    Benabdallah, A
    Rivera, JEM
    Racke, R
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 194 (01) : 82 - 115
  • [8] Stabilization of the nonuniform Timoshenko beam
    Ammar-Khodja, Farid
    Kerbal, Sebti
    Soufyane, Abdelaziz
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 327 (01) : 525 - 538
  • [9] Controllability of the Kirchhoff system for beams as a limit of the Mindlin-Timoshenko system
    Araruna, F. D.
    Zuazua, E.
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2008, 47 (04) : 1909 - 1938
  • [10] Well-posedness and asymptotic behavior of Timoshenko beam system with dynamic boundary dissipative feedback of fractional derivative type
    Benaissa, Abbes
    Benazzouz, Sohbi
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2017, 68 (04):