A reactive molecular dynamics study of the hydrogenation of diamond surfaces

被引:6
作者
Oliveira, Eliezer F. [1 ,2 ]
Neupane, Mahesh R. [3 ]
Li, Chenxi [4 ]
Kannan, Harikishan [4 ]
Zhang, Xiang [4 ]
Puthirath, Anand B. [4 ]
Shah, Pankaj B. [3 ]
Birdwell, A. Glen [3 ]
Ivanov, Tony G. [3 ]
Vajtai, Robert [4 ]
Galvao, Douglas S. [1 ,2 ]
Ajayan, Pulickel M. [4 ]
机构
[1] Univ Campinas UNICAMP, Gleb Wataghin Inst Phys, Grp Organ Solids & New Mat, Campinas, SP, Brazil
[2] Univ Campinas UNICAMP, Ctr Computat Engn & Sci CCES, Campinas, SP, Brazil
[3] US Army, CCDC, Res Lab, Adelphi, MD USA
[4] Rice Univ, Dept Mat Sci & Nanoengn, Houston, TX 77005 USA
基金
巴西圣保罗研究基金会;
关键词
Diamond; Molecular dynamics simulation; Hydrogenation; Surface characterization; FORCE-FIELD; 113; FACETS; AFFINITY; GROWTH; REAXFF;
D O I
10.1016/j.commatsci.2021.110859
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Hydrogenated diamond has been regarded as a promising material in electronic device applications, especially in field-effect transistors (FETs). However, the quality of diamond hydrogenation has not yet been established, nor has the specific orientation that would provide the optimum hydrogen coverage. In addition, most theoretical work in the literature use models with 100% hydrogenated diamond surfaces to study electronic properties, which could be unreachable experimentally. In this work, we have carried out a detailed study using fully atomistic reactive molecular dynamics (MD) simulations on low indices diamond surfaces i.e. (001), (013), (1 1 0), (1 1 3), and (1 1 1) to evaluate the quality and hydrogenation thresholds on different diamond surfaces and their possible effects on electronic properties. Our simulation results indicate that the 100% surface hydrogenation on these surfaces is hard to achieve because of the steric repulsion between the terminated hydrogen atoms. Among all the considered surfaces, the (001), (110), and (113) surfaces incorporate a larger number of hydrogen atoms and passivate the surface dangling bonds. Our results on hydrogen stability also suggest that these surfaces with optimum hydrogen coverage are robust under extreme conditions and could provide homogeneous p-type surface conductivity on the diamond surfaces, a key requirement for high-field, high-frequency device applications.
引用
收藏
页数:9
相关论文
共 56 条
[1]   Surface conductivity of hydrogenated diamond films [J].
Andriotis, Antonis N. ;
Mpourmpakis, Giannis ;
Richter, Ernst ;
Menon, Madhu .
PHYSICAL REVIEW LETTERS, 2008, 100 (10)
[2]   Surface chemical modifications and surface reactivity of nanodiamonds hydrogenated by CVD plasma [J].
Arnault, Jean-Charles ;
Petit, Tristan ;
Girard, Hugues ;
Chavanne, Anthony ;
Gesset, Celine ;
Sennour, Mohamed ;
Chaigneau, Marc .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (24) :11481-11487
[3]   Benchmarking the Performance of the ReaxFF Reactive Force Field on Hydrogen Combustion Systems [J].
Bertels, Luke W. ;
Newcomb, Lucas B. ;
Alaghemandi, Mohammad ;
Green, Jason R. ;
Head-Gordon, Martin .
JOURNAL OF PHYSICAL CHEMISTRY A, 2020, 124 (27) :5631-5645
[4]   ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation [J].
Chenoweth, Kimberly ;
van Duin, Adri C. T. ;
Goddard, William A., III .
JOURNAL OF PHYSICAL CHEMISTRY A, 2008, 112 (05) :1040-1053
[5]   Influence of diamond crystal orientation on the interaction with biological matter [J].
Damle, Viraj ;
Wu, Kaiqi ;
De Luca, Oreste ;
Orti-Casan, Natalia ;
Norouzi, Neda ;
Morita, Aryan ;
de Vries, Joop ;
Kaper, Hans ;
Zuhorn, Inge S. ;
Eisel, Ulrich ;
Vanpoucke, Danny E. P. ;
Rudolf, Petra ;
Schirhagl, Romana .
CARBON, 2020, 162 :1-12
[6]   The (100), (111) and (110) surfaces of diamond: an ab initio B3LYP study [J].
De La Pierre, Marco ;
Bruno, Marco ;
Manfredotti, Chiara ;
Nestola, Fabrizio ;
Prencipe, Mauro ;
Manfredotti, Claudio .
MOLECULAR PHYSICS, 2014, 112 (07) :1030-1039
[7]   Oxidized Si terminated diamond and its MOSFET operation with SiO2 gate insulator [J].
Fei, Wenxi ;
Bi, Te ;
Iwataki, Masayuki ;
Imanishi, Shoichiro ;
Kawarada, Hiroshi .
APPLIED PHYSICS LETTERS, 2020, 116 (21)
[8]   Graphene to graphane: a theoretical study [J].
Flores, M. Z. S. ;
Autreto, P. A. S. ;
Legoas, S. B. ;
Galvao, D. S. .
NANOTECHNOLOGY, 2009, 20 (46)
[9]   Control of surface and bulk crystalline quality in single crystal diamond grown by chemical vapour deposition [J].
Friel, I. ;
Clewes, S. L. ;
Dhillon, H. K. ;
Perkins, N. ;
Twitchen, D. J. ;
Scarsbrook, G. A. .
DIAMOND AND RELATED MATERIALS, 2009, 18 (5-8) :808-815
[10]   Study of the structural phase transition in diamond (100) & (111) surfaces [J].
Gomez, H. ;
Groves, M. N. ;
Neupane, M. R. .
CARBON TRENDS, 2021, 3