Wave Kinematics in a Two-Dimensional Plunging Breaker

被引:1
作者
Scolan, Yves-Marie [1 ]
Guilcher, Pierre-Michel [1 ]
机构
[1] ENSTA Bretagne, IRDL UMR 6027, 2 Rue Francois Verny, F-29806 Brest 9, France
关键词
Potential flow; Nonlinear wave kinematics; Plunging breaker; NUMERICAL-SIMULATION; WATER;
D O I
10.1007/s42286-019-00013-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the wake of theoretical, numerical and experimental advances by a large number of contributors, we revisit here some aspects of the fluid kinematics in a two-dimensional plunging breaker occurring in shallow water. In particular, we propose a simplified identification of the velocity distribution at the free surface in terms of the velocity at some characteristic points. We can then simply explain the reasons for which the velocity is maximum inside the barrel at its roof. We also show that the relative velocity field calculated in a coordinate system centered to a point where the velocity is maximum may have a possible analytic representation.
引用
收藏
页码:185 / 206
页数:22
相关论文
共 29 条
[1]  
Benoit M., 2018, P 16 JOURN HYDR MARS
[2]  
Bogaert H., 2010, P ISOPE BEIJ CHIN
[3]  
Brosset L., 2009, P ISOPE OS JAP
[4]  
Brosset L., 2010, P ISOPE MAUI HAW US
[5]   3-DIMENSIONAL DESINGULARIZED BOUNDARY INTEGRAL METHODS FOR POTENTIAL PROBLEMS [J].
CAO, YS ;
SCHULTZ, WW ;
BECK, RF .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 1991, 12 (08) :785-803
[6]  
Constantin A, 2011, CBMS-NSF MA, V81, P1, DOI 10.1137/1.9781611971873
[7]   The time evolution of the maximal horizontal surface fluid velocity for an irrotational wave approaching breaking [J].
Constantin, A. .
JOURNAL OF FLUID MECHANICS, 2015, 768 :468-475
[8]  
Dold J.W., 1986, NUMERICAL METHODS FL
[9]   DEEP-WATER PLUNGING BREAKERS - A COMPARISON BETWEEN POTENTIAL-THEORY AND EXPERIMENTS [J].
DOMMERMUTH, DG ;
YUE, DKP ;
LIN, WM ;
RAPP, RJ ;
CHAN, ES ;
MELVILLE, WK .
JOURNAL OF FLUID MECHANICS, 1988, 189 :423-442
[10]  
Etienne S., 2018, P 37 INT C OC OFFSH, P2018