About Jackson q-Bessel functions

被引:14
作者
Zhang, CG [1 ]
机构
[1] Univ Sci & Technol Lille, UFR Math, CNRS, UMR 8524,Lab AGAT, F-59655 Villeneuve Dascq, France
关键词
q-Bessel function; connection matrm; Jacobi's theta function; q-Borel-Laplace transform;
D O I
10.1016/S0021-9045(03)00073-X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Laplace transform allows to resolve differential equations in the neighborhood of an irregular singular point. The purpose of the article is to study how to apply a basic Borel-Laplace transformation to q-difference equations satisfied by the q-Bessel functions of F.H. Jackson. Connection matrices are obtained between solutions at the origin and solutions at infinity. (C) 2003 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:208 / 223
页数:16
相关论文
共 16 条
[1]  
ADAMS C. R., 1931, Bull. Amer. Math. Soc., V37, P361
[2]  
Askey R., 1979, APPL ANAL, V8, P125, DOI [10.1080/00036817808839221, DOI 10.1080/00036817808839221]
[3]  
Birkhoff GD., 1913, P AM ACAD ARTS SCI, V49, P521, DOI 10.2307/20025482
[4]   ASYMPTOTICS OF BASIC BESSEL-FUNCTIONS AND Q-LAGUERRE POLYNOMIALS [J].
CHEN, Y ;
ISMAIL, MEH ;
MUTTALIB, KA .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1994, 54 (03) :263-272
[5]  
ETINGOF PI, 1995, AM MATH SOC, V1, P1
[6]  
Gasper George, 2004, ENCY MATH ITS APPL, V96, DOI 10.1017/CBO9780511526251
[8]  
Lang Serge, 1993, REAL FUNCTIONAL ANAL
[9]  
Littlewood JE, 1907, P LOND MATH SOC, V5, P361
[10]  
RAMIS JP, 1988, COMPUTER ALGEBRA DIF, P117