Construction of Multiscale Genome-Scale Metabolic Models: Frameworks and Challenges

被引:17
作者
Bi, Xinyu [1 ,2 ]
Liu, Yanfeng [1 ,2 ]
Li, Jianghua [1 ,2 ]
Du, Guocheng [1 ,2 ]
Lv, Xueqin [1 ,2 ]
Liu, Long [1 ,2 ]
机构
[1] Jiangnan Univ, Key Lab Carbohydrate Chem & Biotechnol, Minist Educ, Wuxi 214122, Jiangsu, Peoples R China
[2] Jiangnan Univ, Sci Ctr Future Foods, Minist Educ, Wuxi 214122, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
multiscale genome-scale metabolic models; multiconstraint models; multiomics models; machine learning; whole-cell models; TRANSCRIPTIONAL REGULATORY NETWORKS; ESCHERICHIA-COLI; RECONSTRUCTION; INTEGRATION; BALANCE; CONSTRAINTS; GENERATION; PLATFORMS; PHENOTYPE; ALGORITHM;
D O I
10.3390/biom12050721
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Genome-scale metabolic models (GEMs) are effective tools for metabolic engineering and have been widely used to guide cell metabolic regulation. However, the single gene-protein-reaction data type in GEMs limits the understanding of biological complexity. As a result, multiscale models that add constraints or integrate omics data based on GEMs have been developed to more accurately predict phenotype from genotype. This review summarized the recent advances in the development of multiscale GEMs, including multiconstraint, multiomic, and whole-cell models, and outlined machine learning applications in GEM construction. This review focused on the frameworks, toolkits, and algorithms for constructing multiscale GEMs. The challenges and perspectives of multiscale GEM development are also discussed.
引用
收藏
页数:21
相关论文
共 145 条
[41]   Software platforms to facilitate reconstructing genome-scale metabolic networks [J].
Hamilton, Joshua J. ;
Reed, Jennifer L. .
ENVIRONMENTAL MICROBIOLOGY, 2014, 16 (01) :49-59
[42]   Machine learning applied to enzyme turnover numbers reveals protein structural correlates and improves metabolic models [J].
Heckmann, David ;
Lloyd, Colton J. ;
Mih, Nathan ;
Ha, Yuanchi ;
Zielinski, Daniel C. ;
Haiman, Zachary B. ;
Desouki, Abdelmoneim Amer ;
Lercher, Martin J. ;
Palsson, Bernhard O. .
NATURE COMMUNICATIONS, 2018, 9
[43]   Thermodynamics-based metabolic flux analysis [J].
Henry, Christopher S. ;
Broadbelt, Linda J. ;
Hatzimanikatis, Vassily .
BIOPHYSICAL JOURNAL, 2007, 92 (05) :1792-1805
[44]   High-throughput generation, optimization and analysis of genome-scale metabolic models [J].
Henry, Christopher S. ;
DeJongh, Matthew ;
Best, Aaron A. ;
Frybarger, Paul M. ;
Linsay, Ben ;
Stevens, Rick L. .
NATURE BIOTECHNOLOGY, 2010, 28 (09) :977-U22
[45]   iBsu1103: a new genome-scale metabolic model of Bacillus subtilis based on SEED annotations [J].
Henry, Christopher S. ;
Zinner, Jenifer F. ;
Cohoon, Matthew P. ;
Stevens, Rick L. .
GENOME BIOLOGY, 2009, 10 (06)
[46]   Genome-scale thermodynamic analysis of Escherichia coli metabolism [J].
Henry, CS ;
Jankowski, MD ;
Broadbelt, LJ ;
Hatzimanikatis, V .
BIOPHYSICAL JOURNAL, 2006, 90 (04) :1453-1461
[47]   The virtual liver: a multidisciplinary, multilevel challenge for systems biology [J].
Holzhuetter, Hermann-Georg ;
Drasdo, Dirk ;
Preusser, Tobias ;
Lippert, Joerg ;
Henney, Adriano M. .
WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE, 2012, 4 (03) :221-235
[48]   Formulating genome-scale kinetic models in the post-genome era [J].
Jamshidi, Neema ;
Palsson, Bernhard O. .
MOLECULAR SYSTEMS BIOLOGY, 2008, 4 (1)
[49]   TIGER: Toolbox for integrating genome-scale metabolic models, expression data, and transcriptional regulatory networks [J].
Jensen, Paul A. ;
Lutz, Kyla A. ;
Papin, Jason A. .
BMC SYSTEMS BIOLOGY, 2011, 5
[50]   Functional integration of a metabolic network model and expression data without arbitrary thresholding [J].
Jensen, Paul A. ;
Papin, Jason A. .
BIOINFORMATICS, 2011, 27 (04) :541-547