Distributed construction of small k-dominating sets and applications

被引:132
作者
Kutten, S
Peleg, D
机构
[1] IBM Corp, Thomas J Watson Res Ctr, Yorktown Heights, NY 10598 USA
[2] Weizmann Inst Sci, Dept Appl Math & Comp Sci, IL-76100 Rehovot, Israel
关键词
D O I
10.1006/jagm.1998.0929
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This article presents a fast distributed algorithm to compute a small k-dominating set D (for any fixed k) and to compute its induced graph partition (breaking the graph into radius k clusters centered around the vertices of D). The time complexity of the algorithm is O(k log* n). Small k-dominating sets have applications in a number of areas, including routing with sparse routing tables, the design of distributed data structures, and center selection in a distributed network. The main application described in this article concerns a fast distributed algorithm for constructing a minimum-weight spanning tree (MST). On an n-vertex network of diameter d, the new algorithm constructs an MST in time O(root n log*n + d), improving on previous results. (C) 1998 Academic Press.
引用
收藏
页码:40 / 66
页数:27
相关论文
共 23 条
[1]  
Afek Y., 1985, P 4 ANN ACM S PRINC, P186
[2]  
Aggarwal S., 1993, P 13 C FDN SOFTW TEC
[3]  
Angluin D., 1980, P 12 ACM S THEORY CO, P82, DOI DOI 10.1145/800141.804655
[4]  
Awerbuch B., 1993, Proceedings of the Twenty-Fifth Annual ACM Symposium on the Theory of Computing, P652, DOI 10.1145/167088.167256
[5]   COMPLEXITY OF NETWORK SYNCHRONIZATION [J].
AWERBUCH, B .
JOURNAL OF THE ACM, 1985, 32 (04) :804-823
[6]  
Awerbuch B., 1987, P 19 ANN ACM S THEOR, P230, DOI DOI 10.1145/28395.28421.URL
[7]  
AWERBUCH B, 1989, P 30 IEEE S FDN COMP, P364
[8]   HOW TO ALLOCATE NETWORK CENTERS [J].
BARILAN, J ;
KORTSARZ, G ;
PELEG, D .
JOURNAL OF ALGORITHMS, 1993, 15 (03) :385-415
[9]   THE K-DOMINATION AND K-STABILITY PROBLEMS ON SUN-FREE CHORDAL GRAPHS [J].
CHANG, GJ ;
NEMHAUSER, GL .
SIAM JOURNAL ON ALGEBRAIC AND DISCRETE METHODS, 1984, 5 (03) :332-345
[10]  
Chin F., 1985, 26th Annual Symposium on Foundations of Computer Science (Cat. No.85CH2224-4), P257, DOI 10.1109/SFCS.1985.7