Structural and electrical properties of carbon-ion-implanted ultrananocrystalline diamond films

被引:5
作者
Xu, Hui [1 ]
Liu, Jian-Jun [1 ]
Ye, Hai-Tao [2 ]
Coathup, D. J. [2 ]
Khomich, A. V. [3 ,4 ]
Hu, Xiao-Jun [1 ]
机构
[1] Zhejiang Univ Technol, Coll Mat Sci & Engn, Hangzhou 310014, Zhejiang, Peoples R China
[2] Aston Univ, Sch Engn & Appl Sci, Aston Inst Mat Res, Birmingham B4 7ET, W Midlands, England
[3] Russian Acad Sci, VA Kotelnikov Inst Radioengn & Elect, Moscow 141190, Russia
[4] Natl Res Nucl Univ MEPhI, Moscow, Russia
基金
欧盟地平线“2020”; 中国国家自然科学基金;
关键词
ultrananocrystalline diamond; C-ion implantation; annealing; electrical properties; NANOCRYSTALLINE DIAMOND; RAMAN-SPECTROSCOPY; TEMPERATURE; DEPOSITION; GROWTH;
D O I
10.1088/1674-1056/27/9/096104
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the structural and electrical properties of carbon-ion-implanted ultrananocrystalline diamond (UNCD) films. Impedance spectroscopy measurements show that the impedance of diamond grains is relatively stable, while that of grain boundaries (GBs) (R-b) significantly increases after the C+ implantation, and decreases with the increase in the annealing temperature (T-a) from 650 degrees C to 1000 degrees C. This implies that the C+ implantation has a more significant impact on the conductivity of GBs. Conductive atomic force microscopy demonstrates that the number of conductive sites increases in GB regions at T-a above 900 degrees C, owing to the formation of a nanographitic phase confirmed by high-resolution transmission electronic microscopy. Visible-light Raman spectra show that resistive trans-polyacetylene oligomers desorb from GBs at T-a above 900 degrees C, which leads to lower R-b of samples annealed at 900 and 1000 degrees C. With the increase in T-a to 1000 degrees C, diamond grains become smaller with longer GBs modified by a more ordered nanographitic phase, supplying more conductive sites and leading to a lower R-b.
引用
收藏
页数:8
相关论文
共 37 条
[1]   Low temperature hot filament chemical vapor deposition of Ultrananocrystalline Diamond films with tunable sheet resistance for electronic power devices [J].
Alcantar-Pena, J. J. ;
Montes, J. ;
Arellano-Jimenez, M. J. ;
Aguilar, J. E. Ortega ;
Berman-Mendoza, D. ;
Garcia, R. ;
Yacaman, M. J. ;
Auciello, O. .
DIAMOND AND RELATED MATERIALS, 2016, 69 :207-213
[2]   Diamond nanowires and the insulator-metal transition in ultrananocrystalline diamond films [J].
Arenal, R. ;
Bruno, P. ;
Miller, D. J. ;
Bleuel, M. ;
Lal, J. ;
Gruen, D. M. .
PHYSICAL REVIEW B, 2007, 75 (19)
[3]   Nanocrystalline diamond as an electronic material: An impedance spectroscopic and Hall effect measurement study [J].
Bevilacqua, Mose ;
Tumilty, Niall ;
Mitra, Chiranjib ;
Ye, Haitao ;
Feygelson, Tatayana ;
Butler, James E. ;
Jackman, Richard B. .
JOURNAL OF APPLIED PHYSICS, 2010, 107 (03)
[4]   Evolution of sp2 bonding with deposition temperature in tetrahedral amorphous carbon studied by Raman spectroscopy [J].
Chhowalla, M ;
Ferrari, AC ;
Robertson, J ;
Amaratunga, GAJ .
APPLIED PHYSICS LETTERS, 2000, 76 (11) :1419-1421
[5]   METAL-INSULATOR-TRANSITION IN TRANS-POLYACETYLENE [J].
CONWELL, EM ;
MIZES, HA ;
JEYADEV, S .
PHYSICAL REVIEW B, 1989, 40 (03) :1630-1641
[6]   Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond [J].
Ferrari, AC ;
Robertson, J .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2004, 362 (1824) :2477-2512
[7]   Ultra-nanocrystalline diamond electrodes: optimization towards neural stimulation applications [J].
Garrett, David J. ;
Ganesan, Kumaravelu ;
Stacey, Alastair ;
Fox, Kate ;
Meffin, Hamish ;
Prawer, Steven .
JOURNAL OF NEURAL ENGINEERING, 2012, 9 (01)
[8]   Phosphorus ion implantation and annealing induced n-type conductivity and microstructure evolution in ultrananocrystalline diamond films [J].
Hu, X. J. ;
Ye, J. S. ;
Hu, H. ;
Chen, X. H. ;
Shen, Y. G. .
APPLIED PHYSICS LETTERS, 2011, 99 (13)
[9]   n-type conductivity and phase transition in ultrananocrystalline diamond films by oxygen ion implantation and annealing [J].
Hu, X. J. ;
Ye, J. S. ;
Liu, H. J. ;
Shen, Y. G. ;
Chen, X. H. ;
Hu, H. .
JOURNAL OF APPLIED PHYSICS, 2011, 109 (05)
[10]   High mobility n-type conductive ultrananocrystalline diamond and graphene nanoribbon hybridized carbon films [J].
Hu, Xiaojun ;
Chen, Chengke ;
Lu, Shaohua .
CARBON, 2016, 98 :671-680