Gain-Scheduled Control via Convex Nonlinear Parameter Varying Models

被引:8
作者
Sala, Antonio [1 ]
Arino, Carlos [2 ]
Robles, Ruben [3 ]
机构
[1] Univ Politecn Valencia, Inst Automat & Informat Ind, Cno Vera S-N, E-46022 Valencia, Spain
[2] Univ Jaume 1, Dept Ind Syst Engn & Design, Av Vicent Sos Baynat S-N, Castellon de La Plana 12071, Spain
[3] Univ Tecmilenio, Campus Las Torres,Paseo Acueducto 2610, Monterrey 64909, NL, Mexico
关键词
INVARIANT-SETS; QUASI-LPV; SYSTEMS; COMPUTATION;
D O I
10.1016/j.ifacol.2019.12.350
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A nonlinear system with sector-bounded nonlinearities can be expressed as a quasi-LPV system (convex combination of linear models, with state-dependent interpolation coefficients). The quasi-LPV class of models is generalised to the so-called convex difference inclusion (CDI) modelling framework by M. Fiacchini and coworkers in several of their works; they propose robust controllers enlarging polytopic domain of attraction estimates. This works further generalises the CDI approach to a gain-scheduled case. As most set-based approaches, the proposal is tractable in low-dimensional cases. (C) 2019, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
引用
收藏
页码:70 / 75
页数:6
相关论文
共 20 条
[1]  
[Anonymous], 2004, FUZZY CONTROL SYSTEM, DOI DOI 10.1002/0471224596
[2]   Asymptotically exact stabilisationfor constrained discrete Takagi-Sugeno systems via set-invariance [J].
Arino, Carlos ;
Sala, Antonio ;
Perez, Emilio ;
Bedate, Fernando ;
Querol, Andres .
FUZZY SETS AND SYSTEMS, 2017, 316 :117-138
[3]   Gain scheduling control of variable-speed wind energy conversion systems using quasi-LPV models [J].
Bianchi, FD ;
Mantz, RJ ;
Christiansen, CF .
CONTROL ENGINEERING PRACTICE, 2005, 13 (02) :247-255
[4]   Set invariance in control [J].
Blanchini, F .
AUTOMATICA, 1999, 35 (11) :1747-1767
[5]  
Boyd Stephen P., 2014, Convex Optimization
[6]   Invariant sets computation for convex difference inclusions systems [J].
Fiacchini, M. ;
Alamo, T. ;
Camacho, E. F. .
SYSTEMS & CONTROL LETTERS, 2012, 61 (08) :819-826
[7]   On the computation of convex robust control invariant sets for nonlinear systems [J].
Fiacchini, M. ;
Alamo, T. ;
Camacho, E. F. .
AUTOMATICA, 2010, 46 (08) :1334-1338
[8]  
Fiacchini M, 2010, THESIS
[9]   LMI-based relaxed nonquadratic stabilization conditions for nonlinear systems in the Takagi-Sugeno's form [J].
Guerra, TM ;
Vermeiren, L .
AUTOMATICA, 2004, 40 (05) :823-829
[10]  
Herceg M, 2013, 2013 EUROPEAN CONTROL CONFERENCE (ECC), P502