The Effect of Surface Hydroxylation on MOF Formation on ALD Metal Oxides: MOF-525 on TiO2/Polypropylene for Catalytic Hydrolysis of Chemical Warfare Agent Simulants

被引:52
作者
Barton, Heather F. [1 ]
Davis, Alexandra K. [1 ]
Parsons, Gregory N. [1 ]
机构
[1] North Carolina State Univ, Dept Chem & Biomol Engn, Raleigh, NC 27606 USA
基金
美国国家科学基金会;
关键词
atomic layer deposition; metal-organic framework; metal oxide; MOF-525; fiber; hydroxylation; ATOMIC LAYER DEPOSITION; ORGANIC FRAMEWORK; THIN-FILMS; FIBER; DEGRADATION; NANOFIBERS; REMOVAL; FACILE; GROWTH; PAPER;
D O I
10.1021/acsami.9b20910
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Metal-organic framework (MOF) fibrous composites were synthesized in a variety of methods in attempt to incorporate the highly effective reactivity of MOFs into a more facile and applicable format. Recent advances have demonstrated incorporating a metal oxide nucleation surface or reactive layer promotes conformal, well-adhered MOF growth on substrates. These materials have demonstrated promising reactivity in capturing or degrading chemical warfare agents and simulants. Here, we examine the mechanisms for MOF nucleation from metal oxide thin films to explore why some metal oxide sources are better suited for one synthesis mechanism over another. We isolate metal oxide extent of hydroxylation as an indicative factor as to whether the film serves as a nucleation promoter or may be converted directly to the MOF thin films. MOF-525 growth on Al2O3, TiO2, and ZnO coated fibers is demonstrated to corroborate these findings and used to degrade chemical warfare agent simulant dimethyl-4-nitrophenyl phosphate.
引用
收藏
页码:14690 / 14701
页数:12
相关论文
共 58 条
[1]   Dense coating of surface mounted CuBTC Metal-Organic Framework nanostructures on silk fibers, prepared by layer-by-layer method under ultrasound irradiation with antibacterial activity [J].
Abbasi, Amir Reza ;
Akhbari, Kamran ;
Morsali, Ali .
ULTRASONICS SONOCHEMISTRY, 2012, 19 (04) :846-852
[2]  
[Anonymous], ANGEW CHEM, DOI [10.1002/ange.201503741, DOI 10.1002/ANGE.201503741]
[3]   Zr-based metal-organic frameworks: design, synthesis, structure, and applications [J].
Bai, Yan ;
Dou, Yibo ;
Xie, Lin-Hua ;
Rutledge, William ;
Li, Jian-Rong ;
Zhou, Hong-Cai .
CHEMICAL SOCIETY REVIEWS, 2016, 45 (08) :2327-2367
[4]  
Barton H. F., 2018, JOVE-J VIS EXP, V136, P4
[5]   Highly crystalline MOF-based materials grown on electrospun nanofibers [J].
Bechelany, M. ;
Drobek, M. ;
Vallicari, C. ;
Abou Chaaya, A. ;
Julbe, A. ;
Miele, P. .
NANOSCALE, 2015, 7 (13) :5794-5802
[6]   Metal-organic frameworks for the removal of toxic industrial chemicals and chemical warfare agents [J].
Bobbitt, N. Scott ;
Mendonca, Matthew L. ;
Howarth, Ashlee J. ;
Islamoglu, Timur ;
Hupp, Joseph T. ;
Farha, Omar K. ;
Snurr, Randall Q. .
CHEMICAL SOCIETY REVIEWS, 2017, 46 (11) :3357-3385
[7]   Solvent hydrolysis and templating effects in the synthesis of metal-organic frameworks [J].
Burrows, AD ;
Cassar, K ;
Friend, RMW ;
Mahon, MF ;
Rigby, SP ;
Warren, JE .
CRYSTENGCOMM, 2005, 7 :548-550
[8]   Growth of Metal-Organic Frameworks on Polymer Surfaces [J].
Centrone, Andrea ;
Yang, Ying ;
Speakman, Scott ;
Bromberg, Lev ;
Rutledge, Gregory C. ;
Hatton, T. Alan .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (44) :15687-15691
[9]   Characterization of the ultrathin HfO2 and Hf-silicate films grown by atomic layer deposition [J].
Chen, Tze Chiang ;
Peng, Cheng-Yi ;
Tseng, Chih-Hung ;
Liao, Ming-Han ;
Chen, Mei-Hsin ;
Wu, Chih-I ;
Chern, Ming-Yau ;
Tzeng, Pei-Jer ;
Liu, Chee Wee .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2007, 54 (04) :759-766
[10]   Removal of chlorine gas by an amine functionalized metal-organic framework via electrophilic aromatic substitution [J].
DeCoste, Jared B. ;
Browe, Matthew A. ;
Wagner, George W. ;
Rossin, Joseph A. ;
Peterson, Gregory W. .
CHEMICAL COMMUNICATIONS, 2015, 51 (62) :12474-12477