FPGA-Based Convolutional Neural Network Accelerator with Resource-Optimized Approximate Multiply-Accumulate Unit

被引:14
|
作者
Cho, Mannhee [1 ]
Kim, Youngmin [2 ]
机构
[1] Korea Univ, Sch Elect Engn, Seoul 02841, South Korea
[2] Hongik Univ, Sch Elect & Elect Engn, Seoul 04066, South Korea
基金
新加坡国家研究基金会;
关键词
convolutional neural network; FPGA; high-level synthesis; accelerator;
D O I
10.3390/electronics10222859
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Convolutional neural networks (CNNs) are widely used in modern applications for their versatility and high classification accuracy. Field-programmable gate arrays (FPGAs) are considered to be suitable platforms for CNNs based on their high performance, rapid development, and reconfigurability. Although many studies have proposed methods for implementing high-performance CNN accelerators on FPGAs using optimized data types and algorithm transformations, accelerators can be optimized further by investigating more efficient uses of FPGA resources. In this paper, we propose an FPGA-based CNN accelerator using multiple approximate accumulation units based on a fixed-point data type. We implemented the LeNet-5 CNN architecture, which performs classification of handwritten digits using the MNIST handwritten digit dataset. The proposed accelerator was implemented, using a high-level synthesis tool on a Xilinx FPGA. The proposed accelerator applies an optimized fixed-point data type and loop parallelization to improve performance. Approximate operation units are implemented using FPGA logic resources instead of high-precision digital signal processing (DSP) blocks, which are inefficient for low-precision data. Our accelerator model achieves 66% less memory usage and approximately 50% reduced network latency, compared to a floating point design and its resource utilization is optimized to use 78% fewer DSP blocks, compared to general fixed-point designs.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Approximate Multiply-Accumulate Array for Convolutional Neural Networks on FPGA
    Wang, Ziwei
    Trefzer, Martin A.
    Bale, Simon J.
    Tyrrell, Andy M.
    2019 14TH INTERNATIONAL SYMPOSIUM ON RECONFIGURABLE COMMUNICATION-CENTRIC SYSTEMS-ON-CHIP (RECOSOC 2019), 2019, : 35 - 42
  • [2] Implementation of Data-optimized FPGA-based Accelerator for Convolutional Neural Network
    Cho, Mannhee
    Kim, Youngmin
    2020 INTERNATIONAL CONFERENCE ON ELECTRONICS, INFORMATION, AND COMMUNICATION (ICEIC), 2020,
  • [3] An FPGA-based Accelerator Platform Implements for Convolutional Neural Network
    Meng, Xiao
    Yu, Lixin
    Qin, Zhiyong
    2019 THE 3RD INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPILATION, COMPUTING AND COMMUNICATIONS (HP3C 2019), 2019, : 25 - 28
  • [4] FPGA-based Accelerator for Convolutional Neural Network Application in Mobile Robotics
    Mazzetto, Lucas F. R.
    Castanho, Jose E. C.
    2023 LATIN AMERICAN ROBOTICS SYMPOSIUM, LARS, 2023 BRAZILIAN SYMPOSIUM ON ROBOTICS, SBR, AND 2023 WORKSHOP ON ROBOTICS IN EDUCATION, WRE, 2023, : 433 - 438
  • [5] A FPGA-based Accelerator of Convolutional Neural Network for Face Feature Extraction
    Ding, Ru
    Su, Guangda
    Bai, Guoqiang
    Xu, Wei
    Su, Nan
    Wu, Xingjun
    2019 IEEE INTERNATIONAL CONFERENCE ON ELECTRON DEVICES AND SOLID-STATE CIRCUITS (EDSSC), 2019,
  • [6] FPGA-Based Unified Accelerator for Convolutional Neural Network and Vision Transformer
    Li T.
    Zhang F.
    Wang S.
    Cao W.
    Chen L.
    Dianzi Yu Xinxi Xuebao/Journal of Electronics and Information Technology, 2024, 46 (06): : 2663 - 2672
  • [7] FPGA-based Training Accelerator Utilizing Sparseness of Convolutional Neural Network
    Nakahara, Hiroki
    Sada, Youki
    Shimoda, Masayuki
    Sayama, Kouki
    Jinguji, Akira
    Sato, Shimpei
    2019 29TH INTERNATIONAL CONFERENCE ON FIELD-PROGRAMMABLE LOGIC AND APPLICATIONS (FPL), 2019, : 180 - 186
  • [8] An Efficient FPGA-Based Dilated and Transposed Convolutional Neural Network Accelerator
    Wu, Tsung-Hsi
    Shu, Chang
    Liu, Tsung-Te
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2024, 71 (11) : 5178 - 5186
  • [9] An FPGA-Based Computation-Efficient Convolutional Neural Network Accelerator
    Archana, V. S.
    2022 IEEE INTERNATIONAL POWER AND RENEWABLE ENERGY CONFERENCE, IPRECON, 2022,
  • [10] Scalable FPGA-Based Convolutional Neural Network Accelerator for Embedded Systems
    Zhao, Jingyuan
    Yin, Zhendong
    Zhao, Yanlong
    Wu, Mingyang
    Xu, Mingdong
    2019 4TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND APPLICATIONS (ICCIA 2019), 2019, : 36 - 40