Extended eigenvalues for bilateral weighted shifts

被引:4
作者
Lacruz, Miguel [1 ]
Leon-Saavedra, Fernando [2 ]
Munoz-Molina, Luis J. [2 ]
机构
[1] Univ Seville, Fac Matemat, Dept Anal Matemat, Ave Reina Mercedes S-N, E-41012 Seville, Spain
[2] Univ Cadiz, Dept Matemat, Ave Univ S-N, Jerez de la Frontera 11405, Spain
关键词
Hilbert space operator; Intertwining operator; Extended eigenvalue; Extended eigenoperator; Bilateral weighted shift; SPECTRAL-RADIUS ALGEBRAS; COMPACT-OPERATORS;
D O I
10.1016/j.jmaa.2016.07.045
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A complex scalar lambda is said to be an extended eigenvalue for an operator A on a Hilbert space H if there is a non-zero operator X such that AX = lambda XA, and in that case, X is said to be an extended eigenoperator. It is shown that if a bilateral weighted shift has a non-unimodular extended eigenvalue then every extended eigenoperator for A is strictly lower triangular. Also, it is shown that the set of the extended eigenvalues for an injective bilateral weighted shift is either C\D or C\{0} or (D) over bar\{0}, or T, and some examples are constructed in order to show that each of the four shapes does happen. Further, it is shown that the set of the extended eigenvalues for an injective bilateral weighted shift with an even sequence of weights is either C\{0} or T, and that the set of the extended eigenvalues for an invertible bilateral weighted shift is T. Finally, a factorization result is provided for the extended eigenoperators corresponding to a unimodular extended eigenvalue of an injective bilateral weighted shift. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:1591 / 1602
页数:12
相关论文
共 15 条
[1]   Extended eigenvalues and the volterra operator [J].
Biswas, A ;
Lambert, A ;
Petrovic, S .
GLASGOW MATHEMATICAL JOURNAL, 2002, 44 :521-534
[2]   On spectral radius algebras and normal operators [J].
Biswas, Animikh ;
Lambert, Alan ;
Petrovic, Srdjan .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2007, 56 (04) :1661-1674
[3]  
Biswas A, 2006, INTEGR EQUAT OPER TH, V55, P233, DOI 10.1007/s00020-005-1381-5
[4]   INTERTWINING RELATIONS AND EXTENDED EIGENVALUES FOR ANALYTIC TOEPLITZ OPERATORS [J].
Bourdon, Paul S. ;
Shapiro, Joel H. .
ILLINOIS JOURNAL OF MATHEMATICS, 2008, 52 (03) :1007-1030
[5]  
Brown S., 1979, J. Operator Theory, V1, P117
[6]  
Kim H.W., 1979, J. Operator Theory, V2, P131
[7]   Extended eigenvalues for Cesaro operators [J].
Lacruz, Miguel ;
Leon-Saavedra, Fernando ;
Petrovic, Srdjan ;
Zabeti, Omid .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 429 (02) :623-657
[8]   LOCALIZING ALGEBRAS AND INVARIANT SUBSPACES [J].
Lacruz, Miguel ;
Rodriguez-Piazza, Luis .
JOURNAL OF OPERATOR THEORY, 2014, 72 (02) :429-449
[9]   Beyond hyperinvariance for compact operators [J].
Lambert, A ;
Petrovic, S .
JOURNAL OF FUNCTIONAL ANALYSIS, 2005, 219 (01) :93-108
[10]  
Lambert Alan, 2004, NEW YORK J MATH, V10, P83