Stellar atmospheric parameter estimation using Gaussian process regression

被引:25
作者
Bu, Yude [1 ]
Pan, Jingchang [2 ]
机构
[1] Shandong Univ, Sch Math & Stat, Weihai 264209, Shandong, Peoples R China
[2] Shandong Univ, Sch Mech Elect & Informat Engn, Weihai 264209, Shandong, Peoples R China
基金
美国国家科学基金会; 中国国家自然科学基金; 美国安德鲁·梅隆基金会;
关键词
methods: data analysis; methods: numerical; stars: abundances; stars: fundamental parameters; ARTIFICIAL NEURAL-NETWORKS; DIGITAL SKY SURVEY; ESTIMATING PHOTOMETRIC REDSHIFTS; GUOSHOUJING TELESCOPE LAMOST; METAL-POOR STARS; DATA RELEASE; AUTOMATED CLASSIFICATION; SPECTRAL CLASSIFICATION; EMPIRICAL SPECTRA; HORIZONTAL-BRANCH;
D O I
10.1093/mnras/stu2063
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
As is well known, it is necessary to derive stellar parameters from massive amounts of spectral data automatically and efficiently. However, in traditional automatic methods such as artificial neural networks (ANNs) and kernel regression (KR), it is often difficult to optimize the algorithm structure and determine the optimal algorithm parameters. Gaussian process regression (GPR) is a recently developed method that has been proven to be capable of overcoming these difficulties. Here we apply GPR to derive stellar atmospheric parameters from spectra. Through evaluating the performance of GPR on Sloan Digital Sky Survey (SDSS) spectra, Medium resolution Isaac Newton Telescope Library of Empirical Spectra (MILES) spectra, ELODIE spectra and the spectra of member stars of galactic globular clusters, we conclude that GPR can derive stellar parameters accurately and precisely, especially when we use data preprocessed with principal component analysis (PCA). We then compare the performance of GPR with that of several widely used regression methods (ANNs, support-vector regression and KR) and find that with GPR it is easier to optimize structures and parameters and more efficient and accurate to extract atmospheric parameters.
引用
收藏
页码:256 / 265
页数:10
相关论文
共 52 条
[1]   THE TENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY: FIRST SPECTROSCOPIC DATA FROM THE SDSS-III APACHE POINT OBSERVATORY GALACTIC EVOLUTION EXPERIMENT [J].
Ahn, Christopher P. ;
Alexandroff, Rachael ;
Allende Prieto, Carlos ;
Anders, Friedrich ;
Anderson, Scott F. ;
Anderton, Timothy ;
Andrews, Brett H. ;
Aubourg, Eric ;
Bailey, Stephen ;
Bastien, Fabienne A. ;
Bautista, Julian E. ;
Beers, Timothy C. ;
Beifiori, Alessandra ;
Bender, Chad F. ;
Berlind, Andreas A. ;
Beutler, Florian ;
Bhardwaj, Vaishali ;
Bird, Jonathan C. ;
Bizyaev, Dmitry ;
Blake, Cullen H. ;
Blanton, Michael R. ;
Blomqvist, Michael ;
Bochanski, John J. ;
Bolton, Adam S. ;
Borde, Arnaud ;
Bovy, Jo ;
Bradley, Alaina Shelden ;
Brandt, W. N. ;
Brauer, Dorothee ;
Brinkmann, J. ;
Brownstein, Joel R. ;
Busca, Nicolas G. ;
Carithers, William ;
Carlberg, Joleen K. ;
Carnero, Aurelio R. ;
Carr, Michael A. ;
Chiappini, Cristina ;
Chojnowski, S. Drew ;
Chuang, Chia-Hsun ;
Comparat, Johan ;
Crepp, Justin R. ;
Cristiani, Stefano ;
Croft, Rupert A. C. ;
Cuesta, Antonio J. ;
Cunha, Katia ;
da Costa, Luiz N. ;
Dawson, Kyle S. ;
De Lee, Nathan ;
Dean, Janice D. R. ;
Delubac, Timothee .
ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2014, 211 (02)
[2]  
[Anonymous], 2002, Series: Springer Series in Statistics
[3]  
[Anonymous], 1996, Bayesian learning for neural networks
[4]  
[Anonymous], 1998, NEURAL NETWORKS COMP
[5]  
Bailer-Jones C. A. L., 1997, P AUSTR PAC FOR INT, P913
[6]   Automated classification of stellar spectra - II. Two-dimensional classification with neural networks and principal components analysis [J].
Bailer-Jones, CAL ;
Irwin, M ;
von Hippel, T .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1998, 298 (02) :361-377
[7]   Physical parametrization of stellar spectra: the neural network approach [J].
BailerJones, CAL ;
Irwin, M ;
Gilmore, G ;
vonHippel, T .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1997, 292 (01) :157-166
[8]   ELODIE: A spectrograph for accurate radial velocity measurements [J].
Baranne, A ;
Queloz, D ;
Mayor, M ;
Adrianzyk, G ;
Knispel, G ;
Kohler, D ;
Lacroix, D ;
Meunier, JP ;
Rimbaud, G ;
Vin, A .
ASTRONOMY & ASTROPHYSICS SUPPLEMENT SERIES, 1996, 119 (02) :373-390
[9]   Estimation of stellar metal abundance. II. A recalibration of the Ca II K technique, and the autocorrelation function method [J].
Beers, TC ;
Rossi, S ;
Norris, JE ;
Ryan, SG ;
Shefler, T .
ASTRONOMICAL JOURNAL, 1999, 117 (02) :981-1009
[10]   Photometric redshift estimation using Gaussian processes [J].
Bonfield, D. G. ;
Sun, Y. ;
Davey, N. ;
Jarvis, M. J. ;
Abdalla, F. B. ;
Banerji, M. ;
Adams, R. G. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2010, 405 (02) :987-994