Arbitrarily high order structure-preserving algorithms for the Allen-Cahn model with a nonlocal constraint

被引:12
作者
Hong, Qi [1 ,2 ]
Gong, Yuezheng [1 ,2 ]
Zhao, Jia [3 ]
Wang, Qi [4 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Dept Math, Nanjing 211106, Peoples R China
[2] MIIT, Key Lab Math Modelling & High Performance Comp Ai, Nanjing 211106, Peoples R China
[3] Utah State Univ, Dept Math & Stat, Logan, UT 84322 USA
[4] Univ South Carolina, Dept Math, Columbia, SC 29208 USA
基金
中国博士后科学基金; 美国国家科学基金会;
关键词
Nonlocal Allen-Cahn model; Energy stable schemes; Linear high-order schemes; Symplectic Runge-Kutta method; Cosine pseudo-spectral method; FINITE-DIFFERENCE SCHEME; TIME-STEPPING STRATEGY; PHASE-FIELD MODELS; ELEMENT METHODS; STABLE SCHEMES; ENERGY; 2ND-ORDER; EQUATIONS; CONSERVATION; STABILITY;
D O I
10.1016/j.apnum.2021.08.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop fully discrete structure-preserving numerical algorithms of arbitrarily high order for the Allen-Cahn model with a nonlocal constraint subject to the Neumann boundary condition. Using the energy quadratization methodology, we reformulate the thermodynamically consistent model into an equivalent one with a quadratic free energy. For the reformulated model, we first apply a Cosine pseudo-spectral approximation in space to arrive at a semi-discrete system that inherits the volume conservation and energy dissipative property; then we use two distinct temporal discretization methods to derive fully discrete schemes of arbitrarily higher order. One is based on the symplectic Runge-Kutta (RK) method and the other is a linearized Runge-Kutta method by the prediction-correction strategy. The fully discrete schemes preserve both volume and the energy dissipative property. In addition, we show that the liner system resulting from the schemes warrants the unique solvability. A fast solver combined with the discrete Cosine transform (DCT) is exploited to implement the high-order scheme efficiently. Extensive numerical examples are presented to show the efficiency and accuracy of the newly proposed methods. (C) 2021 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:321 / 339
页数:19
相关论文
共 51 条
  • [1] ENERGY-DECAYING EXTRAPOLATED RK-SAV METHODS FOR THE ALLEN-CAHN AND CAHN-HILLIARD EQUATIONS
    Akrivis, Georgios
    Li, Buyang
    li, Dongfang
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (06) : A3703 - A3727
  • [2] MICROSCOPIC THEORY FOR ANTIPHASE BOUNDARY MOTION AND ITS APPLICATION TO ANTIPHASE DOMAIN COARSENING
    ALLEN, SM
    CAHN, JW
    [J]. ACTA METALLURGICA, 1979, 27 (06): : 1085 - 1095
  • [3] An Overview on Numerical Analyses of Nematic Liquid Crystal Flows
    Badia, S.
    Guillen-Gonzalez, F.
    Gutierrez-Santacreu, J. V.
    [J]. ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2011, 18 (03) : 285 - 313
  • [4] Finite element approximation of nematic liquid crystal flows using a saddle-point structure
    Badia, Santiago
    Guillen-Gonzalez, Francisco
    Vicente Gutierrez-Santacreu, Juan
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (04) : 1686 - 1706
  • [5] A modified phase field approximation for mean curvature flow with conservation of the volume
    Brassel, M.
    Bretin, E.
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2011, 34 (10) : 1157 - 1180
  • [6] Brugnano L., 2010, JNAIAM J NUMER ANAL, V5, P17
  • [7] STABILITY-CRITERIA FOR IMPLICIT RUNGE-KUTTA METHODS
    BURRAGE, K
    BUTCHER, JC
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1979, 16 (01) : 46 - 57
  • [8] FREE ENERGY OF A NONUNIFORM SYSTEM .1. INTERFACIAL FREE ENERGY
    CAHN, JW
    HILLIARD, JE
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1958, 28 (02) : 258 - 267
  • [9] ENERGY-PRESERVING RUNGE-KUTTA METHODS
    Celledoni, Elena
    McLachlan, Robert I.
    McLaren, David I.
    Owren, Brynjulf
    Quispel, G. Reinout W.
    Wright, William M.
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2009, 43 (04): : 645 - 649
  • [10] A Third Order Exponential Time Differencing Numerical Scheme for No-Slope-Selection Epitaxial Thin Film Model with Energy Stability
    Cheng, Kelong
    Qiao, Zhonghua
    Wang, Cheng
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2019, 81 (01) : 154 - 185