Classification of Convex Ancient Solutions to Curve Shortening Flow on the Sphere

被引:23
作者
Bryan, Paul [1 ]
Louie, Janelle [1 ]
机构
[1] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
关键词
Curve shortening flow; Ancient solutions; Aleksandrov reflection; Harnack; ALEKSANDROV REFLECTION; PLANE-CURVES; EVOLUTION;
D O I
10.1007/s12220-015-9574-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the only closed, embedded ancient solutions to the curve shortening flow on S-2 are equators or shrinking circles, starting at an equator at time t = -infinity and collapsing to the north pole at time t = 0. To obtain the result, we first prove a Harnack inequality for the curve shortening flow on the sphere. Then an application of the Gauss-Bonnet, easily allows us to obtain curvature bounds for ancient solutions leading to backwards smooth convergence to an equator. To complete the proof, we use an Aleksandrov reflection argument to show that maximal symmetry is preserved under the flow.
引用
收藏
页码:858 / 872
页数:15
相关论文
共 13 条
[1]   Aleksandrov reflection and nonlinear evolution equations .1. The n-sphere and n-ball [J].
Chow, B ;
Gulliver, R .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1996, 4 (03) :249-264
[2]   Aleksandrov reflection and geometric evolution of hypersurfaces [J].
Chow, B ;
Gulliver, R .
COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2001, 9 (02) :261-280
[3]  
Chow B., 1997, Comm. Anal. Geom, V5, P389, DOI [10.4310/CAG.1997.v5.n2.a5, DOI 10.4310/CAG.1997.V5.N2.A5]
[4]  
Daskalopoulos P, 2010, J DIFFER GEOM, V84, P455
[5]  
GAGE M, 1986, J DIFFER GEOM, V23, P69
[6]   CURVE SHORTENING MAKES CONVEX CURVES CIRCULAR [J].
GAGE, ME .
INVENTIONES MATHEMATICAE, 1984, 76 (02) :357-364
[7]   SHORTENING EMBEDDED CURVES [J].
GRAYSON, MA .
ANNALS OF MATHEMATICS, 1989, 129 (01) :71-111
[8]  
GRAYSON MA, 1987, J DIFFER GEOM, V26, P285
[9]  
Hamilton R. S., 1995, SURVEYS DIFFERENTIAL, VII, P7
[10]  
Huisken G., 1998, ASIAN J MATH, V2, P127