Sensor Fusion To Improve State Estimate Accuracy Using Multiple Inertial Measurement Units

被引:5
|
作者
Patel, Ujjval N. [1 ]
Faruque, Imraan A. [1 ]
机构
[1] Oklahoma State Univ, Mech & Aerosp Engn, Stillwater, OK 74078 USA
来源
2021 8TH IEEE INTERNATIONAL SYMPOSIUM ON INERTIAL SENSORS AND SYSTEMS (INERTIAL 2021) | 2021年
关键词
Inertial Measurement Units; State Estimation; Federated Kalman Filter; OptiTracker; Kalman Filter;
D O I
10.1109/INERTIAL51137.2021.9430484
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The growing availability of low-cost commercial inertial measurement units (IMUs) raises questions about how to best improve sensor estimates when using multiple IMUs. This paper reports on the performance of two approaches applied to GPS-denied onboard attitude estimation. The approaches are a virtual IMU approach fusing sensor measurements and a Federated Filter fusing state estimates from several Extended Kalman Filters (EKFs) each using one IMU and magnetometer. We compare their performance as quantified by root mean square (RMS) using parallel implementations of estimators in a Raspberry-Pi-based autopilot during prescribed motions in a motion capture volume. The results suggest that a Multi-IMU GPS-denied approach can deliver comparable performance to the single-IMU GPS aided approach and provide a testbed for multi-IMU performance quantification.(1)
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Inertial Measurement Unit Error Modeling Tutorial INERTIAL NAVIGATION SYSTEM STATE ESTIMATION WITH REAL-TIME SENSOR CALIBRATION
    Farrell, Jay A. A.
    Silva, Felipe O. O.
    Rahman, Farzana
    Wendel, Jan
    IEEE CONTROL SYSTEMS MAGAZINE, 2022, 42 (06): : 40 - 66
  • [22] Estimating Orientation Using Magnetic and Inertial Sensors and Different Sensor Fusion Approaches: Accuracy Assessment in Manual and Locomotion Tasks
    Bergamini, Elena
    Ligorio, Gabriele
    Summa, Aurora
    Vannozzi, Giuseppe
    Cappozzo, Aurelio
    Sabatini, Angelo Maria
    SENSORS, 2014, 14 (10) : 18625 - 18649
  • [23] Quantitative Shape Measurement of an Inflatable Rubber Dam Using an Array of Inertial Measurement Units
    Hu, Yonghui
    Yan, Yong
    Efstratiou, Christos
    Vela-Orte, David
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2021, 70
  • [24] Low Back Biomechanics of Keg Handling Using Inertial Measurement Units
    Brents, Colleen
    Hischke, Molly
    Reiser, Raoul
    Rosecrance, John
    PROCEEDINGS OF THE 20TH CONGRESS OF THE INTERNATIONAL ERGONOMICS ASSOCIATION (IEA 2018), VOL 8: ERGONOMICS AND HUMAN FACTORS IN MANUFACTURING, AGRICULTURE, BUILDING AND CONSTRUCTION, SUSTAINABLE DEVELOPMENT AND MINING, 2019, 825 : 71 - 81
  • [25] A Prototype for Monitoring Railway Vehicle Dynamics Using Inertial Measurement Units
    Medeiros, Leandro
    Oliveira Silva, Pedro Henrique
    Valente, Lucas de Castro
    Nepomuceno, Erivelton Geraldo
    2018 13TH IEEE INTERNATIONAL CONFERENCE ON INDUSTRY APPLICATIONS (INDUSCON), 2018, : 149 - 154
  • [26] Design of visual inertial state estimator for autonomous systems via multi-sensor fusion approach
    He, Shenghuang
    Li, Yanzhou
    Lu, Yongkang
    Liu, Yishan
    MECHATRONICS, 2023, 95
  • [27] Android platform for realtime gait tracking using inertial measurement units
    Aqueveque, Pablo
    Sobarzo, Sergio
    Saavedra, Francisco
    Maldonado, Claudio
    Gomez, Britam
    EUROPEAN JOURNAL OF TRANSLATIONAL MYOLOGY, 2016, 26 (03) : 262 - 267
  • [28] Deep Neural Network Based Inertial Odometry Using Low-Cost Inertial Measurement Units
    Chen, Changhao
    Lu, Chris Xiaoxuan
    Wahlstrom, Johan
    Markham, Andrew
    Trigoni, Niki
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2021, 20 (04) : 1351 - 1364
  • [29] State Estimation for UAVs Using Sensor Fusion
    Bodo, Zsofia
    Laraos, Bela
    2017 IEEE 15TH INTERNATIONAL SYMPOSIUM ON INTELLIGENT SYSTEMS AND INFORMATICS (SISY), 2017, : 111 - 116
  • [30] Adaptive compensation of measurement delays in multi-sensor fusion for inertial motion tracking using moving horizon estimation
    Girrbach, Fabian
    Kok, Manon
    Zandbergen, Raymond
    Hageman, Tijmen
    Diehl, Moritz
    PROCEEDINGS OF 2020 23RD INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION 2020), 2020, : 336 - 342