Some approximation results involving the q-Szasz-Mirakjan-Kantorovich type operators via Dunkl's generalization

被引:53
作者
Srivastava, H. M. [1 ,2 ]
Mursaleen, M. [3 ,5 ]
Alotaibi, Abdullah M. [4 ,5 ]
Nasiruzzaman, Md. [3 ]
Al-Abied, A. A. H. [3 ]
机构
[1] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 3R4, Canada
[2] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40402, Taiwan
[3] Aligarh Muslim Univ, Dept Math, Aligarh 202002, Uttar Pradesh, India
[4] King Abdulaziz Univ, Dept Math, Fac Sci, POB 80203, Jeddah 21589, Saudi Arabia
[5] King Abdulaziz Univ, Dept Math, Operator Theory & Applicat Res Grp, Fac Sci, POB 80203, Jeddah 21589, Saudi Arabia
关键词
basic (or q-) integers; basic (or q-) hypergeometric functions; basic (or q-) exponential functions; q-Dunkl's analogue; Szasz operator; q-Szasz-Mirakjan-Kantorovich operator; rate of convergence; modulus of continuity; Peetre's K-functional; STATISTICAL APPROXIMATION; POLYNOMIALS;
D O I
10.1002/mma.4397
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this paper is to introduce a family of q-Szasz-Mirakjan-Kantorovich type positive linear operators that are generated by Dunkl's generalization of the exponential function. We present approximation properties with the help of well-known Korovkin's theorem and determine the rate of convergence in terms of classical modulus of continuity, the class of Lipschitz functions, Peetre's K-functional, and the second-order modulus of continuity. Furthermore, we obtain the approximation results for bivariate q-Szasz-Mirakjan-Kantorovich type operators that are also generated by the aforementioned Dunkl generalization of the exponential function. Copyright (c) 2017 John Wiley & Sons, Ltd.
引用
收藏
页码:5437 / 5452
页数:16
相关论文
共 32 条
[1]  
[Anonymous], 1966, GEN HYPERGEOMETRIC F
[2]  
[Anonymous], 1987, SEMINAR NUMERICAL ST
[3]  
[Anonymous], J INEQUAL APPL
[4]  
[Anonymous], 1995, Stud. Univ. Babes-Bolyai Math
[5]  
Aral A., 2013, Applications of q-Calculus in Operator Theory
[6]  
Bailey WN, 1935, GENERALIZED HYPERGEO, V32
[7]   q-Dunkl-classical q-Hermite type polynomials [J].
Ben Cheikh, Youssef ;
Gaied, Mohamed ;
Zaghouani, Ali .
GEORGIAN MATHEMATICAL JOURNAL, 2014, 21 (02) :125-137
[8]  
Bernstein S. N., 1912, Comm. Soc. Math. Kharkov, V13, P1
[9]   q-Extension of a Multivariable and Multiparameter Generalization of the Gottlieb Polynomials in Several Variables [J].
Choi, Junesang ;
Srivastava, H. M. .
TOKYO JOURNAL OF MATHEMATICS, 2014, 37 (01) :111-125
[10]  
Gadjiev A. D, 1976, Math. Notes, V20, P781, DOI DOI 10.1016/J.JMAA.2006.04.070