Commutators and wreath products

被引:0
作者
Guralnick, Robert M. [1 ]
机构
[1] Univ So Calif, Dept Math, Los Angeles, CA 90089 USA
来源
CHARACTER THEORY OF FINITE GROUPS | 2010年 / 524卷
关键词
Wreath product; commutators; perfect groups;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We improve a result of Isaacs by showing that if U is any nontrivial abelian subgroup of finite order and H is a finite group with derived subgroup of order at least 3, then some element of the derived subgroup of U (sic) H is not a comrimtator. In particular, if H is perfect, then the derived subgroup of U (sic) H is perfect and contains elements which are not commutators.
引用
收藏
页码:79 / 82
页数:4
相关论文
共 8 条
[1]  
GURALNICK R, 1977, EXPRESSING GROUP ELE
[2]   RESULT OF SCHUR [J].
GURALNICK, RM .
JOURNAL OF ALGEBRA, 1979, 59 (02) :302-310
[3]   On the commuting probability in finite groups [J].
Guralnick, Robert M. ;
Robinson, Geoffrey R. .
JOURNAL OF ALGEBRA, 2006, 300 (02) :509-528
[4]  
Isaacs I. M., 2008, Grad. Stud. Math., V92
[5]   COMMUTATORS AND COMMUTATOR SUBGROUP [J].
ISAACS, IM .
AMERICAN MATHEMATICAL MONTHLY, 1977, 84 (09) :720-722
[6]  
Kappe L.-C., 2007, LMS LECT NOTES, V340, P531
[7]  
LIEBECK M, J EUROPEAN IN PRESS
[8]   On finitely generated profinite groups, I: strong completeness and uniform bounds [J].
Nikolov, Nikolay ;
Segal, Dan .
ANNALS OF MATHEMATICS, 2007, 165 (01) :171-238