Gold-in-copper at low *CO coverage enables efficient electromethanation of CO2

被引:135
作者
Wang, Xue [1 ]
Ou, Pengfei [1 ]
Wicks, Joshua [1 ]
Xie, Yi [2 ]
Wang, Ying [2 ]
Li, Jun [3 ]
Tam, Jason [4 ]
Ren, Dan [3 ]
Howe, Jane Y. [4 ]
Wang, Ziyun [1 ]
Ozden, Adnan [5 ]
Finfrock, Y. Zou [6 ,7 ]
Xu, Yi [5 ]
Li, Yuhang [1 ]
Rasouli, Armin Sedighian [1 ]
Bertens, Koen [1 ]
Ip, Alexander H. [1 ]
Graetzel, Michael [3 ]
Sinton, David [5 ]
Sargent, Edward H. [1 ]
机构
[1] Univ Toronto, Dept Elect & Comp Engn, Toronto, ON, Canada
[2] Chinese Univ Hong Kong, Dept Chem, Hong Kong, Peoples R China
[3] Ecole Polytech Fed Lausanne, Inst Chem Sci & Engn, Lausanne, Switzerland
[4] Univ Toronto, Dept Mat Sci & Engn, Toronto, ON, Canada
[5] Univ Toronto, Dept Mech & Ind Engn, Toronto, ON, Canada
[6] Canadian Light Source, Sci Div, Saskatoon, SK, Canada
[7] Argonne Natl Lab, Photon Sci Div, Lemont, IL USA
基金
加拿大自然科学与工程研究理事会; 加拿大创新基金会;
关键词
INITIO MOLECULAR-DYNAMICS; TOTAL-ENERGY CALCULATIONS; ELECTROCHEMICAL REDUCTION; CARBON-DIOXIDE; REACTION-MECHANISMS; CU(100) SURFACE; LIQUID FUEL; ELECTROREDUCTION; CU; ELECTROCATALYSTS;
D O I
10.1038/s41467-021-23699-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The renewable-electricity-powered CO2 electroreduction reaction provides a promising means to store intermittent renewable energy in the form of valuable chemicals and dispatchable fuels. Renewable methane produced using CO2 electroreduction attracts interest due to the established global distribution network; however, present-day efficiencies and activities remain below those required for practical application. Here we exploit the fact that the suppression of *CO dimerization and hydrogen evolution promotes methane selectivity: we reason that the introduction of Au in Cu favors *CO protonation vs. C-C coupling under low *CO coverage and weakens the *H adsorption energy of the surface, leading to a reduction in hydrogen evolution. We construct experimentally a suite of Au-Cu catalysts and control *CO availability by regulating CO2 concentration and reaction rate. This strategy leads to a 1.6x improvement in the methane:H-2 selectivity ratio compared to the best prior reports operating above 100 mA cm(-2). We as a result achieve a CO2-to-methane Faradaic efficiency (FE) of (56 +/- 2)% at a production rate of (112 +/- 4) mA cm(-2). The electroreduction of CO2 offers a promising approach to produce carbon-neutral methane using renewable electricity. This study shows that the introduction of Au in Cu enables selective methane production from CO2 by regulating *CO availability.
引用
收藏
页数:7
相关论文
共 62 条
[1]   IMPROVED TETRAHEDRON METHOD FOR BRILLOUIN-ZONE INTEGRATIONS [J].
BLOCHL, PE ;
JEPSEN, O ;
ANDERSEN, OK .
PHYSICAL REVIEW B, 1994, 49 (23) :16223-16233
[2]   Atomically Dispersed Copper-Platinum Dual Sites Alloyed with Palladium Nanorings Catalyze the Hydrogen Evolution Reaction [J].
Chao, Tingting ;
Luo, Xuan ;
Chen, Wenxing ;
Jiang, Bin ;
Ge, Jingjie ;
Lin, Yue ;
Wu, Geng ;
Wang, Xiaoqian ;
Hu, Yanmin ;
Zhuang, Zhongbin ;
Wu, Yuen ;
Hong, Xun ;
Li, Yadong .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (50) :16047-16051
[3]   Electrochemical Reduction of Carbon Dioxide to Ethane Using Nanostructured Cu2O-Derived Copper Catalyst and Palladium(II) Chloride [J].
Chen, Chung Shou ;
Wan, Jane Hui ;
Yeo, Boon Siang .
JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (48) :26875-26882
[4]   Full atomistic reaction mechanism with kinetics for CO reduction on Cu(100) from ab initio molecular dynamics free-energy calculations at 298 K [J].
Cheng, Tao ;
Xiao, Hai ;
Goddard, William A., III .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2017, 114 (08) :1795-1800
[5]   Reaction Mechanisms for the Electrochemical Reduction of CO2 to CO and Formate on the Cu(100) Surface at 298 K from Quantum Mechanics Free Energy Calculations with Explicit Water [J].
Cheng, Tao ;
Xiao, Hai ;
Goddard, William A., III .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (42) :13802-13805
[6]   Free-Energy Barriers and Reaction Mechanisms for the Electrochemical Reduction of CO on the Cu(100) Surface, Including Multiple Layers of Explicit Solvent at pH 0 [J].
Cheng, Tao ;
Xiao, Hai ;
Goddard, William A., III .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2015, 6 (23) :4767-4773
[7]   Electrochemical CO2 Reduction over Compressively Strained CuAg Surface Alloys with Enhanced Multi-Carbon Oxygenate Selectivity [J].
Clark, Ezra L. ;
Hahn, Christopher ;
Jaramillo, Thomas F. ;
Bell, Alexis T. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (44) :15848-15857
[8]   Engineering the properties of metal nanostructures via galvanic replacement reactions [J].
Cobley, Claire M. ;
Xia, Younan .
MATERIALS SCIENCE & ENGINEERING R-REPORTS, 2010, 70 (3-6) :44-62
[9]   CO2 electrolysis to multicarbon products at activities greater than 1 A cm-2 [J].
de Arquer, F. Pelayo Garcia ;
Cao-Thang Dinh ;
Ozden, Adnan ;
Wicks, Joshua ;
McCallum, Christopher ;
Kirmani, Ahmad R. ;
Dae-Hyun Nam ;
Gabardo, Christine ;
Seifitokaldani, Ali ;
Wang, Xue ;
Li, Yuguang C. ;
Li, Fengwang ;
Edwards, Jonathan ;
Richter, Lee J. ;
Thorpe, Steven J. ;
Sinton, David ;
Sargent, Edward H. .
SCIENCE, 2020, 367 (6478) :661-+
[10]   CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface [J].
Dinh, Cao-Thang ;
Burdyny, Thomas ;
Kibria, Md Golam ;
Seifitokaldani, Ali ;
Gabardo, Christine M. ;
de Arquer, F. Pelayo Garcia ;
Kiani, Amirreza ;
Edwards, Jonathan P. ;
De Luna, Phil ;
Bushuyev, Oleksandr S. ;
Zou, Chengqin ;
Quintero-Bermudez, Rafael ;
Pang, Yuanjie ;
Sinton, David ;
Sargent, Edward H. .
SCIENCE, 2018, 360 (6390) :783-787