Causes of Jets in the Quasi-Perpendicular Magnetosheath

被引:15
|
作者
Kajdic, Primoz [1 ]
Raptis, Savvas [2 ]
Blanco-Cano, Xochitl [1 ]
Karlsson, Tomas [2 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Geofis, Dept Ciencias Espaciales, Ciudad Univ, Ciudad De Mexico, Mexico
[2] KTH Royal Inst Technol, Space & Plasma Phys, Stockholm, Sweden
关键词
magnetosheath jets; quasi-perpendicular magnetosheath; reconnection exhausts; mirror-mode waves; convected flux tubes; HIGH-SPEED JETS; MAGNETIC RECONNECTION; CLUSTER; PLASMA; MAGNETOPAUSE; BOUNDARY; MISSION;
D O I
10.1029/2021GL093173
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Magnetosheath jets are currently an important topic in the field of magnetosheath physics. It is thought that 97% of the jets are produced by the shock rippling at quasi-parallel shocks. Recently, large statistical studies of magnetosheath jets have been performed, however, it is not clear whether rippling also produces jets found downstream of quasi-perpendicular shocks. We analyze four types of events in the quasi-perpendicular magnetosheath with signatures characteristic of magnetosheath jets, namely increased density and/or dynamic pressure that were not produced by the shock rippling: (a) magnetic flux tubes connected to the quasi-parallel bow-shock, (b) nonreconnecting current sheets, (c) reconnection exhausts, and (d) mirror-mode waves. The flux tubes are downstream equivalents of the upstream traveling foreshocks. Magnetosheath jets can impact the magnetopause, so knowing the conditions under which they form may enable us to understand their signatures in the magnetosphere.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Pickup ion dynamics at the structured quasi-perpendicular shock
    Zilbersher, D
    Gedalin, M
    PLANETARY AND SPACE SCIENCE, 1997, 45 (06) : 693 - 703
  • [32] Solitary Waves Across Supercritical Quasi-Perpendicular Shocks
    Vasko, I. Y.
    Mozer, F. S.
    Krasnoselskikh, V. V.
    Artemyev, A. V.
    Agapitov, O. V.
    Bale, S. D.
    Avanov, L.
    Ergun, R.
    Giles, B.
    Lindqvist, P. -A.
    Russell, C. T.
    Strangeway, R.
    Torbert, R.
    GEOPHYSICAL RESEARCH LETTERS, 2018, 45 (12) : 5809 - 5817
  • [33] Statistical study of the quasi-perpendicular shock ramp widths
    Hobara, Y.
    Balikhin, M.
    Krasnoselskikh, V.
    Gedalin, M.
    Yamagishi, H.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2010, 115
  • [34] Wave and particle evolution downstream of quasi-perpendicular shocks
    McKean, ME
    Omidi, N
    KraussVarban, D
    Karimabadi, H
    PHYSICS OF COLLISIONLESS SHOCKS, 1995, 15 (8-9): : 319 - 322
  • [35] Structure and stationarity of quasi-perpendicular shocks: Numerical simulations
    Hellinger, P
    PLANETARY AND SPACE SCIENCE, 2003, 51 (11) : 649 - 657
  • [36] ELECTRON DYNAMICS AND WHISTLER WAVES AT QUASI-PERPENDICULAR SHOCKS
    KRAUSSVARBAN, D
    PANTELLINI, FGE
    BURGESS, D
    GEOPHYSICAL RESEARCH LETTERS, 1995, 22 (16) : 2091 - 2094
  • [37] Electron acceleration and structure in the quasi-perpendicular collisionless shock
    Burgess, D
    Physics of Collisionless Shocks, 2005, 781 : 17 - 21
  • [38] Electron Kinetic Entropy across Quasi-Perpendicular Shocks
    Lindberg, Martin
    Vaivads, Andris
    Raptis, Savvas
    Lindqvist, Per-Arne
    Giles, Barbara L.
    Gershman, Daniel Jonathan
    ENTROPY, 2022, 24 (06)
  • [39] Dynamics of energetic electrons in nonstationary quasi-perpendicular shocks
    Matsukiyo, Shuichi
    Scholer, Manfred
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2012, 117
  • [40] Mirror waves downstream of the quasi-perpendicular bow shock
    Czaykowska, A
    Bauer, TM
    Treumann, RA
    Baumjohann, W
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1998, 103 (A3) : 4747 - 4753