Convergence rate of a finite volume scheme for the linear convection-diffusion equation on locally refined meshes

被引:28
作者
Coudière, Y
Villedieu, P
机构
[1] Inst Natl Sci Appl, UMR 5640, F-31077 Toulouse 4, France
[2] Off Natl Etud & Rech Aerosp, Ctr Toulouse, F-31055 Toulouse 4, France
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 2000年 / 34卷 / 06期
关键词
finite volumes; mesh refinement; convection-diffusion; convergence rate;
D O I
10.1051/m2an:2000120
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a finite volume method, used to approximate the solution of the linear two dimensional convection diffusion equation, with mixed Dirichlet and Neumann boundary conditions, on Cartesian meshes refined by an automatic technique (which leads to meshes with hanging nodes). We propose an analysis through a discrete variational approach, in a discrete H-1 finite volume space. We actually prove the convergence of the scheme in a discrete H-1 norm, with an error estimate of order O(h) (on meshes of size h).
引用
收藏
页码:1123 / 1149
页数:27
相关论文
共 33 条
[21]  
LESAINT P, 1976, RESOLUTION SYSTEMES
[22]  
MANTEUFFEL TA, 1986, MATH COMPUT, V47, P511, DOI 10.1090/S0025-5718-1986-0856700-3
[23]  
MER K, 1994, 2213 INRIA
[24]  
Mishev ID, 1998, NUMER METH PART D E, V14, P193, DOI 10.1002/(SICI)1098-2426(199803)14:2<193::AID-NUM4>3.0.CO
[25]  
2-J
[26]   FINITE VOLUME METHODS AND THEIR ANALYSIS [J].
MORTON, KW ;
SULI, E .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1991, 11 (02) :241-260
[27]  
SULI E, 1991, SIAM J NUMER ANAL, V28, P1419
[28]  
THOMAS JM, 1995, 9519 CNRS
[29]  
THOMAS JM, 1995, 9520 CNRS
[30]  
Vanselow R, 1998, NUMER METH PART D E, V14, P213, DOI 10.1002/(SICI)1098-2426(199803)14:2<213::AID-NUM5>3.0.CO