On the spectral radius of unicyclic graphs with perfect matchings

被引:62
作者
Chang, A [1 ]
Tian, F
机构
[1] Fuzhou Univ, Dept Math, Fujian 350002, Peoples R China
[2] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100080, Peoples R China
基金
中国国家自然科学基金;
关键词
unicyclic graphs; spectral radius; perfect matching;
D O I
10.1016/S0024-3795(03)00394-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let U+(2k) be the set of all unicyclic graphs on 2k (k greater than or equal to 2) vertices with perfect matchings. Let U-2k(1) be the graph on 2k vertices obtained from C-3 by attaching a pendant edge and k - 2 paths of length 2 at one vertex of C-3; Let U-2k(2) be the graph on 2k vertices obtained from 2k C-3 by adding a pendant edge at each vertex together with k - 3 paths of length 2 at one of three vertices. In this paper, we prove that U-2k(1) and U-2k(2) have the largest and the second largest spectral radius among the graphs in U+ (2k) when k not equal 3. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:237 / 250
页数:14
相关论文
共 14 条
[1]  
[Anonymous], 1980, SPECTRA GRAPHS THEOR
[2]  
[Anonymous], PUBL I MATH BEOGRAD
[3]  
Brualdi R. A., 1986, PUBL I MATH-BEOGRAD, V39, P45
[4]  
CHANG A, IN PRESS DISCRETE MA
[5]   A TABLE OF CONNECTED GRAPHS ON 6 VERTICES [J].
CVETKOVIC, D ;
PETRIC, M .
DISCRETE MATHEMATICS, 1984, 50 (01) :37-49
[6]   SPECTRA OF UNICYCLIC GRAPHS [J].
CVETKOVIC, D ;
ROWLINSON, P .
GRAPHS AND COMBINATORICS, 1987, 3 (01) :7-23
[7]  
CVETKOVIC D, 1997, EIGENSPACES GRAPHS
[8]  
CVETKOVIC D, 1990, LINEAR MULTILINEAR A, V28, P3, DOI DOI 10.1080/03081089008818026
[9]  
GUO JM, 2001, LINEAR ALGEBRA APPL, V329, P1
[10]   Bounds on the largest eigenvalues of trees with a given size of matching [J].
Hou, YP ;
Li, JS .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2002, 342 (1-3) :203-217