Spectroscopic and thermodynamic evidence for antimicrobial peptide membrane selectivity

被引:50
作者
Russell, Amanda L. [1 ]
Kennedy, Anthony M. [1 ]
Spuches, Anne M. [1 ]
Venugopal, Divakaramenon [1 ]
Bhonsle, Jayendra B. [2 ]
Hicks, Rickey P. [1 ]
机构
[1] E Carolina Univ, Dept Chem, Greenville, NC 27858 USA
[2] Walter Reed Army Inst Res, Div Expt Therapeut, Silver Spring, MD 20910 USA
关键词
Antimicrobial peptide; Circular dichroism; Isothermal titration calorimetry; Calcein fluorescence leakage; Liposomes; ISOTHERMAL TITRATION CALORIMETRY; MAGAININ; 2; AMIDE; PORE FORMATION; PHOSPHOLIPID-MEMBRANES; AMPHIPATHIC PEPTIDES; GRAMICIDIN-S; BINDING; BILAYERS; LEAKAGE; MODEL;
D O I
10.1016/j.chemphyslip.2010.03.009
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In our laboratory we developed a series of antimicrobial peptides that exhibit selectivity and potency for prokaryotic over eukaryotic cells (Hicks et al., 2007). Circular dichroism (CD), isothermal calorimetry (ITC) and calcein leakage assays were conducted to determine the mechanism of lipid binding of a representative peptide 1 (Ac-GF-Tic-Oic-GK-Tic-Oic-GF-Tic-Oic-GK-Tic-KKKK-CONH2) to model membranes. POPC liposomes were used as a simple model for eukaryotic membranes and 4:1 POPC:POPG liposomes were used as a simple model for prokaryotic membranes. CD, ITC and calcein leakage data clearly indicate that compound 1 interacts via very different mechanisms with the two different liposome membranes. Compound 1 exhibits weaker binding and induces less calcein leakage in POPC liposomes than POPC:POPG (4:1 mole ratio) liposomes. The predominant binding mechanism to POPC appears to be limited to surface interactions while the mechanism of binding to 4:1 POPC:POPG most likely involves some type of pore formation. (C) 2010 Elsevier Ireland Ltd. All rights reserved.
引用
收藏
页码:488 / 497
页数:10
相关论文
共 68 条
  • [1] Isothermal titration calorimetry studies of the binding of the antimicrobial peptide gramicidin S to phospholipid bilayer membranes
    Abraham, T
    Lewis, RNAH
    Hodges, RS
    McElhaney, RN
    [J]. BIOCHEMISTRY, 2005, 44 (33) : 11279 - 11285
  • [2] Thermodynamics of the interactions of tryptophan-rich cathelicidin antimicrobial peptides with model and natural membranes
    Andrushchenko, Valery V.
    Aarabi, Mohammed H.
    Nguyen, Leonard T.
    Prenner, Elmar J.
    Vogel, Hans J.
    [J]. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 2008, 1778 (04): : 1004 - 1014
  • [3] [Anonymous], 2000, Circular Dichroism: Principles and Applications
  • [4] Pore-forming action of mastoparan peptides on liposomes: a quantitative analysis
    Arbuzova, A
    Schwarz, G
    [J]. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 1999, 1420 (1-2): : 139 - 152
  • [5] Bastos M., 2007, BIOPHYS J BIOFAST
  • [6] Structure and functions of channel-forming peptides: Magainins, cecropins, melittin and alamethicin
    Bechinger, B
    [J]. JOURNAL OF MEMBRANE BIOLOGY, 1997, 156 (03) : 197 - 211
  • [7] STUDY OF VESICLE LEAKAGE INDUCED BY MELITTIN
    BENACHIR, T
    LAFLEUR, M
    [J]. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 1995, 1235 (02): : 452 - 460
  • [8] Benoiton N.L., 2006, Chemistry of Peptide Synthesis
  • [9] Application of 3D-QSAR for identification of descriptors defining bioactivity of antimicrobial peptides
    Bhonsle, Jayendra B.
    Venugopal, Divakaramenon
    Huddler, Donald P.
    Magill, Alan J.
    Hicks, Rickey P.
    [J]. JOURNAL OF MEDICINAL CHEMISTRY, 2007, 50 (26) : 6545 - 6553
  • [10] Lipid-induced conformation and lipid-binding properties of cytolytic and antimicrobial peptides: determination and biological specificity
    Blondelle, SE
    Lohner, K
    Aguilar, MI
    [J]. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 1999, 1462 (1-2): : 89 - 108