Thermally rearranged (TR) polymer membranes for CO2 separation

被引:305
作者
Park, Ho Bum [1 ,2 ]
Han, Sang Hoon [1 ,2 ]
Jung, Chul Ho [1 ,2 ]
Lee, Young Moo [1 ,2 ]
Hill, Anita J. [3 ]
机构
[1] Hanyang Univ, Sch Chem Engn, Seoul 133791, South Korea
[2] Hanyang Univ, WCU Dept Energy Engn, Seoul 133791, South Korea
[3] CSIRO, Mat Sci & Engn, Clayton, Vic 3169, Australia
关键词
Thermal rearrangement; High-temperature polymers; Microporous polymers; Membranes; Gas separation; GAS PERMEATION PROPERTIES; INTRINSIC MICROPOROSITY; AROMATIC POLYIMIDES; CARBON-DIOXIDE; TRANSPORT; PERMEABILITY; SELECTION; MIXTURES;
D O I
10.1016/j.memsci.2009.09.037
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The evolution of micropores in polymer membranes helps accelerate mass transport phenomena on a sub-nanoscale, providing significant technological applications for adsorption, separation and storage. Here we report the synthesis and characterization of thermally rearranged (TR) polymer membranes showing unexpected microporous characters that are often observed in microporous inorganic materials, by using thermal rearrangement of various aromatic polyimides with semi-rigid chain segments in a solid state. Differing from other superglassy polymers (e.g., poly(1-methylsilyl-1-propyne) (PTMSP)) possessing larges cavities, these TR polymer membranes show fast molecular transport as well as a molecular sieving effect for small gas molecules. Micropore structures and their size distributions can be easily tuned by varying the monomer structures of the precursor polymers (i.e., polyimides with ortho-positioned functional groups, PIOFG) and by using different thermal treatment protocols (e.g., final temperature and thermal dwell time). These TR polymer membranes exhibit excellent gas separation performance, especially in carbon dioxide separations (e.g., CO2/CH4), without any paramount plasticization effect. The current approach will be useful in an assessment of the achievements of membrane materials science, providing much insight into new class of microporous polymers. (C) 2009 Published by Elsevier B.V.
引用
收藏
页码:11 / 24
页数:14
相关论文
共 43 条
  • [1] *ACC SOFTW INC, 2005, MAT STUD VERS 4 3
  • [2] Natural gas processing with membranes: An overview
    Baker, Richard W.
    Lokhandwala, Kaaeid
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2008, 47 (07) : 2109 - 2121
  • [3] Future directions of membrane gas separation technology
    Baker, RW
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2002, 41 (06) : 1393 - 1411
  • [4] Intermediate polymer to carbon gas separation membranes based on Matrimid PI
    Barsema, JN
    Klijnstra, SD
    Balster, JH
    van der Vegt, NFA
    Koops, GH
    Wessling, M
    [J]. JOURNAL OF MEMBRANE SCIENCE, 2004, 238 (1-2) : 93 - 102
  • [5] VAN DER WAALS VOLUMES + RADII
    BONDI, A
    [J]. JOURNAL OF PHYSICAL CHEMISTRY, 1964, 68 (03) : 441 - +
  • [6] Braz G.I., 1966, POLYM SCI USSR, V8, P295, DOI DOI 10.1016/0032-3950(66)90391-1
  • [7] Breck D.W.., 1974, J CHROMATOGR SCI, P55
  • [8] Gas separation membranes from polymers of intrinsic microporosity
    Budd, PM
    Msayib, KJ
    Tattershall, CE
    Ghanem, BS
    Reynolds, KJ
    McKeown, NB
    Fritsch, D
    [J]. JOURNAL OF MEMBRANE SCIENCE, 2005, 251 (1-2) : 263 - 269
  • [9] Structure-property relationships for poly(pyrrolone-imide) gas separation membranes
    Burns, RL
    Koros, WJ
    [J]. MACROMOLECULES, 2003, 36 (07) : 2374 - 2381
  • [10] Sulfonated PEEK-WC membranes for possible fuel cell applications
    Drioli, E
    Regina, A
    Casciola, M
    Oliveti, A
    Trotta, F
    Massari, T
    [J]. JOURNAL OF MEMBRANE SCIENCE, 2004, 228 (02) : 139 - 148