A Dirichlet type problem for complex polyharmonic functions

被引:3
作者
Grzebula, H. [1 ]
Michalik, S. [1 ]
机构
[1] Cardinal Stefan Wyszynski Univ, Fac Math & Nat Sci, Coll Sci, Woycickiego 1-3, PL-01938 Warsaw, Poland
关键词
Dirichlet problem; polyharmonic function; Almansi expansion; Lie ball; 31B30; 32A25; 32A50; 35J40;
D O I
10.1007/s10474-017-0740-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We extend holomorphically polyharmonic functions on a real ball to a complex set being the union of rotated balls. We solve a Dirichlet type problem for complex polyharmonic functions with the boundary condition given on the union of rotated spheres.
引用
收藏
页码:216 / 229
页数:14
相关论文
共 13 条
[1]  
[Anonymous], 1979, TRANSLATIONS MATH MO
[2]  
[Anonymous], 2010, POLYHARMONIC BOUNDAR
[3]  
[Anonymous], TRANSLATION MATH MON
[4]  
Aronszajn N., 1983, POLYHARMONIC FUNCTIO
[5]  
Axler S., 1992, Harmonic function theory
[6]   On the mean value property for polyharmonic functions [J].
Lysik, G. .
ACTA MATHEMATICA HUNGARICA, 2011, 133 (1-2) :133-139
[7]   Higher order Pizzetti's formulas [J].
Lysik, Grzegorz .
RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2016, 27 (01) :105-115
[8]   Mean-value properties of real analytic functions [J].
Lysik, Grzegorz .
ARCHIV DER MATHEMATIK, 2012, 98 (01) :61-70
[9]   Summable solutions of some partial differential equations and generalised integral means [J].
Michalik, Slawomir .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 444 (02) :1242-1259
[10]  
Milne-Thomson L.M., 1933, The Calculus of Finite Differences