Constructing titanium carbide MXene/reduced graphene oxide superlattice heterostructure via electrostatic self-assembly for high- performance capacitive deionization

被引:47
作者
Xu, Huiting [1 ]
Li, Meng [1 ]
Gong, Siqi [1 ]
Zhao, Fan [1 ]
Zhao, Yang [2 ]
Li, Chunli [1 ]
Qi, Junjie [1 ]
Wang, Zhiying [1 ]
Wang, Honghai [1 ]
Fan, Xiaobin [2 ]
Peng, Wenchao [2 ]
Liu, Jiapeng [1 ]
机构
[1] Hebei Univ Technol, Sch Chem Engn & Technol, Natl Local Joint Engn Lab Energy Conservat Chem Pr, Tianjin 300130, Peoples R China
[2] Tianjin Univ, Collaborat Innovat Ctr Chem Sci & Engn, Sch Chem Engn & Technol, State Key Lab Chem Engn, Tianjin 300072, Peoples R China
关键词
Two-dimensional nanomaterials; Superlattice heterostructure; Electrostatic self-assembly; Capacitive deionization; DESALINATION; REMOVAL; HYBRID; IONS;
D O I
10.1016/j.jcis.2022.05.131
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Capacitive deionization has attracted wide concern on account of its high energy efficiency, low manufacturing cost and environmental friendliness. Nevertheless, the development of capacitive deionization is still impeded because of the scarcity of suitable electrode materials with superior performance. Herein, we successfully prepared the two-dimensional (2D) titanium carbide (Ti3C2Tx) MXene/ reduced graphene oxide (rGO) superlattice heterostructure by a facile electrostatic self-assembly strategy and systematically investigated its performance as capacitive deionized electrode materials. The unique 2D/2D super lattice heterostructure not only effectively alleviates the self-stacking problem of Ti(3)C(2)T(x)MXene nanosheets, but also endows the heterostructure with superior conductivity and fast ion diffusion rate. As a result, the MXene/rGO superlattice heterostructure exhibits an outstanding salt (Na+) adsorption capacity (48 mg g-1) at 1.2 V significantly superior to pristine Ti3C2Tx MXene nanosheets, along with outstanding long-term cycling performance. Furthermore, the mechanism involved was elucidated through comprehensive characterizations. Therefore, this study offers a new pathway for designing high-performance electrode materials for capacitive deionization.(C) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:233 / 241
页数:9
相关论文
共 48 条
  • [1] Porous Cryo-Dried MXene for Efficient Capacitive Deionization
    Bao, Weizhai
    Tang, Xiao
    Guo, Xin
    Choi, Sinho
    Wang, Chengyin
    Gogotsi, Yury
    Wang, Guoxiu
    [J]. JOULE, 2018, 2 (04) : 778 - 787
  • [2] Na3V2(PO4)3@C as Faradaic Electrodes in Capacitive Deionization for High-Performance Desalination
    Cao, Jianglin
    Wang, Ying
    Wang, Lei
    Yu, Fei
    Ma, Jie
    [J]. NANO LETTERS, 2019, 19 (02) : 823 - 828
  • [3] Dual-ions electrochemical deionization: a desalination generator
    Chen, Fuming
    Huang, Yinxi
    Guo, Lu
    Sun, Linfeng
    Wang, Ye
    Yang, Hui Ying
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2017, 10 (10) : 2081 - 2089
  • [4] A novel three-dimensional desalination system utilizing honeycomb-shaped lattice structures for flow-electrode capacitive deionization
    Cho, Younghyun
    Lee, Ki Sook
    Yang, SeungCheol
    Choi, Jiyeon
    Park, Hong-ran
    Kim, Dong Kook
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2017, 10 (08) : 1746 - 1750
  • [5] Battery Electrode Materials with Omnivalent Cation Storage for Fast and Charge-Efficient Ion Removal of Asymmetric Capacitive Deionization
    Choi, Seungyeon
    Chang, Barsa
    Kim, Seoni
    Lee, Jiho
    Yoon, Jeyong
    Choi, Jang Wook
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (35)
  • [6] Electrochemical Desalination of Seawater and Hypersaline Brines with Coupled Electricity Storage
    Desai, Divyaraj
    Beh, Eugene S.
    Sahu, Saroj
    Vedharathinam, Vedasri
    van Overmeere, Quentin
    de Lannoy, Charles F.
    Jose, Arun P.
    Voelkel, Armin R.
    Rivest, Jessy B.
    [J]. ACS ENERGY LETTERS, 2018, 3 (02): : 375 - 379
  • [7] Metal Ion-Induced Assembly of MXene Aerogels via Biomimetic Microtextures for Electromagnetic Interference Shielding, Capacitive Deionization, and Microsupercapacitors
    Ding, Meng
    Li, Shuo
    Guo, Lu
    Jing, Lin
    Gao, Si-Ping
    Yang, Haitao
    Little, Joshua M.
    Dissanayake, Thilini U.
    Li, Kerui
    Yang, Jie
    Guo, Yong-Xin
    Yang, Hui Ying
    Woehl, Taylor J.
    Chen, Po-Yen
    [J]. ADVANCED ENERGY MATERIALS, 2021, 11 (35)
  • [8] Modified MXene/Holey Graphene Films for Advanced Supercapacitor Electrodes with Superior Energy Storage
    Fan, Zhimin
    Wang, Youshan
    Xie, Zhimin
    Wang, Duola
    Yuan, Yin
    Kang, Hongjun
    Su, Benlong
    Cheng, Zhongjun
    Liu, Yuyan
    [J]. ADVANCED SCIENCE, 2018, 5 (10):
  • [9] Induction of Planar Sodium Growth on MXene (Ti3C2Tx)-Modified Carbon Cloth Hosts for Flexible Sodium Metal Anodes
    Fang, Yongzheng
    Lian, Ruqian
    Li, Huipeng
    Zhang, Ying
    Gong, Zhe
    Zhu, Kai
    Ye, Ke
    Yan, Jun
    Wang, Guiling
    Gao, Yu
    Wei, Yingjin
    Cao, Dianxue
    [J]. ACS NANO, 2020, 14 (07) : 8744 - 8753
  • [10] Lithiophilic Three -Dimensional Porous Ti3C2Tx-rGO Membrane as a Stable Scaffold for Safe Alkali Metal (Li or Na) Anodes
    Fang, Yongzheng
    Zhang, Ying
    Zhu, Kai
    Lian, Ruqian
    Gao, Yu
    Yin, Jinling
    Ye, Ke
    Cheng, Kui
    Yan, Jun
    Wang, Guiling
    Wei, Yingjin
    Cao, Dianxue
    [J]. ACS NANO, 2019, 13 (12) : 14319 - 14328