Bernstein-Szego-Lebesgue Sobolev orthogonal polynomials on the unit circle

被引:2
作者
Berriochoa, E
Cachafeiro, A [1 ]
机构
[1] Univ Vigo, Dept Matemat Aplicada, ETS Ingenieros Ind, Vigo 36280, Spain
[2] Univ Vigo, Fac Ciencias, Dept Matemat Aplicada, Orense, Spain
关键词
orthogonal polynomials; difference equations; Sobolev inner products; measures on the unit circle;
D O I
10.1080/10236190008808254
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider the following continuous Sobolev inner product on the unit circle <f(z), g(z)> (s) = integral (2 pi)(0)f(e(i theta))g(e(i theta))d mu(theta) + 1/lambda integral (2 pi)(0) f'(e(i theta))g'(e(i theta))d theta /2 pi, z = e(i theta), where lambda > 0, d mu(theta) is a Bernstein-Szego measure and d theta /2 pi is the normalized Lebesgue measure on [0, 2 pi]. We study the corresponding sequence of orthogonal polynomials. Algebraic properties, asymptotic behavior and asymptotic distribution of zeros for such polynomials are obtained.
引用
收藏
页码:719 / 737
页数:19
相关论文
共 15 条
[1]  
AGARWAL RP, 1992, PURE APPL MATH SERIE
[2]   Lebesgue Sobolev orthogonality on the unit circle [J].
Berriochoa, E ;
Cachafeiro, A .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1998, 96 (01) :27-34
[3]   A family of Sobolev orthogonal polynomials on the unit circle [J].
Berriochoa, E ;
Cachafeiro, A .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1999, 105 (1-2) :163-173
[4]   JENTZSCH-SZEGO TYPE THEOREMS FOR THE ZEROS OF BEST APPROXIMANTS [J].
BLATT, HP ;
SAFF, EB ;
SIMKANI, M .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1988, 38 :307-316
[5]  
Conway J. B., 2012, Functions of One Complex Variable, V1
[6]  
Freud G., 1971, ORTHOGONAL POLYNOMIA
[7]  
Grenander U, 1958, TOEPLITZ FORMS THEIR
[8]   ON POLYNOMIALS ORTHOGONAL WITH RESPECT TO CERTAIN SOBOLEV INNER PRODUCTS [J].
ISERLES, A ;
KOCH, PE ;
NORSETT, SP ;
SANZSERNA, JM .
JOURNAL OF APPROXIMATION THEORY, 1991, 65 (02) :151-175
[9]   ASYMPTOTICS FOR SOLUTIONS OF SMOOTH RECURRENCE EQUATIONS [J].
MATE, A ;
NEVAI, P .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 93 (03) :423-429
[10]   ON THE DISTRIBUTION OF ZEROS OF POLYNOMIALS ORTHOGONAL ON THE UNIT-CIRCLE [J].
MHASKAR, HN ;
SAFF, EB .
JOURNAL OF APPROXIMATION THEORY, 1990, 63 (01) :30-38