Numerical methods are proposed for the nonlinear Stokes-Biot system modeling interaction of a free fluid with a poroelastic structure. We discuss time discretization and decoupling schemes that allow the fluid and the poroelastic structure computed independently using a common stress force along the interface. The coupled system of nonlinear Stokes and Biot is formulated as a least-squares problem with constraints, where the objective functional measures violation of some interface conditions. The local constraints, the Stokes and Biot models, are discretized in time using second-order schemes. Computational algorithms for the least-squares problems are discussed and numerical results are provided to compare the accuracy and efficiency of the algorithms.
机构:
Univ Notre Dame, Dept Appl & Computat Math & Stat, South Bend, IN 46556 USAUniv Notre Dame, Dept Appl & Computat Math & Stat, South Bend, IN 46556 USA
Oyekole, Oyekola
Trenchea, Catalin
论文数: 0引用数: 0
h-index: 0
机构:
Univ Pittsburgh, Dept Math, Pittsburgh, PA 15260 USAUniv Notre Dame, Dept Appl & Computat Math & Stat, South Bend, IN 46556 USA
Trenchea, Catalin
Bukac, Martina
论文数: 0引用数: 0
h-index: 0
机构:
Univ Notre Dame, Dept Appl & Computat Math & Stat, South Bend, IN 46556 USAUniv Notre Dame, Dept Appl & Computat Math & Stat, South Bend, IN 46556 USA
机构:
Univ Notre Dame, Dept Appl & Computat Math & Stat, South Bend, IN 46556 USAUniv Notre Dame, Dept Appl & Computat Math & Stat, South Bend, IN 46556 USA
Oyekole, Oyekola
Trenchea, Catalin
论文数: 0引用数: 0
h-index: 0
机构:
Univ Pittsburgh, Dept Math, Pittsburgh, PA 15260 USAUniv Notre Dame, Dept Appl & Computat Math & Stat, South Bend, IN 46556 USA
Trenchea, Catalin
Bukac, Martina
论文数: 0引用数: 0
h-index: 0
机构:
Univ Notre Dame, Dept Appl & Computat Math & Stat, South Bend, IN 46556 USAUniv Notre Dame, Dept Appl & Computat Math & Stat, South Bend, IN 46556 USA