Quantitative prediction of breast cancer resistant protein mediated drug-drug interactions using physiologically-based pharmacokinetic modeling

被引:36
|
作者
Costales, Chester [1 ]
Lin, Jian [1 ]
Kimoto, Emi [1 ]
Yamazaki, Shinji [2 ,5 ]
Gosset, James R. [3 ]
Rodrigues, A. David [1 ]
Lazzaro, Sarah [1 ]
West, Mark A. [1 ]
West, Michael [4 ]
Varma, Manthena V. S. [1 ]
机构
[1] Pfizer Inc, Pharmacokinet Dynam & Metab, Med Design, Worldwide R&D, Groton, CT 06340 USA
[2] Pfizer Inc, Pharmacokinet Dynam & Metab, Med Design, Worldwide R&D, San Diego, CA USA
[3] Pfizer Inc, Pharmacokinet Dynam & Metab, Med Design, Worldwide R&D, Cambridge, MA USA
[4] Pfizer Inc, Worldwide R&D, Med Design, Discovery Sci, Groton, CT USA
[5] Pharmaceut Co Johnson & Johnson, Janssen Res & Dev, Drug Metab & Pharmacokinet, San Diego, CA USA
来源
CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY | 2021年 / 10卷 / 09期
关键词
ANION-TRANSPORTING POLYPEPTIDE; IN-VIVO EXTRAPOLATION; ROSUVASTATIN; CLEARANCE; DISPOSITION; INHIBITION; ABCG2; VARIABILITY; DISCOVERY; SUBSTRATE;
D O I
10.1002/psp4.12672
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Quantitative assessment of drug-drug interactions (DDIs) involving breast cancer resistance protein (BCRP) inhibition is challenged by overlapping substrate/inhibitor specificity. This study used physiologically-based pharmacokinetic (PBPK) modeling to delineate the effects of inhibitor drugs on BCRP- and organic anion transporting polypeptide (OATP)1B-mediated disposition of rosuvastatin, which is a recommended BCRP clinical probe. Initial static model analysis using in vitro inhibition data suggested BCRP/OATP1B DDI risk while considering regulatory cutoff criteria for a majority of inhibitors assessed (25 of 27), which increased rosuvastatin plasma exposure to varying degree (similar to 0-600%). However, rosuvastatin area under plasma concentration-time curve (AUC) was minimally impacted by BCRP inhibitors with calculated G-value (= gut concentration/inhibition potency) below 100. A comprehensive PBPK model accounting for intestinal (OATP2B1 and BCRP), hepatic (OATP1B, BCRP, and MRP4), and renal (OAT3) transport mechanisms was developed for rosuvastatin. Adopting in vitro inhibition data, rosuvastatin plasma AUC changes were predicted within 25% error for 9 of 12 inhibitors evaluated via PBPK modeling. This study illustrates the adequacy and utility of a mechanistic model-informed approach in quantitatively assessing BCRP-mediated DDIs.
引用
收藏
页码:1018 / 1031
页数:14
相关论文
共 50 条
  • [1] Physiologically-Based Pharmacokinetic Modeling of Macitentan: Prediction of Drug-Drug Interactions
    de Kanter, Ruben
    Sidharta, Patricia N.
    Delahaye, Stphane
    Gnerre, Carmela
    Segrestaa, Jerome
    Buchmann, Stephan
    Kohl, Christopher
    Treiber, Alexander
    CLINICAL PHARMACOKINETICS, 2016, 55 (03) : 369 - 380
  • [2] Physiologically-Based Pharmacokinetic Modeling of Macitentan: Prediction of Drug–Drug Interactions
    Ruben de Kanter
    Patricia N. Sidharta
    Stéphane Delahaye
    Carmela Gnerre
    Jerome Segrestaa
    Stephan Buchmann
    Christopher Kohl
    Alexander Treiber
    Clinical Pharmacokinetics, 2016, 55 : 369 - 380
  • [3] Prediction of Renal Transporter Mediated Drug-Drug Interactions for Pemetrexed Using Physiologically Based Pharmacokinetic Modeling
    Posada, Maria M.
    Bacon, James A.
    Schneck, Karen B.
    Tirona, Rommel G.
    Kim, Richard B.
    Higgins, J. William
    Pak, Y. Anne
    Hall, Stephen D.
    Hillgren, Kathleen M.
    DRUG METABOLISM AND DISPOSITION, 2015, 43 (03) : 325 - 334
  • [4] PHYSIOLOGICALLY-BASED PHARMACOKINETIC MODELING OF ATORVASTATIN AND RELATED SPECIES AND PREDICTION OF DRUG-DRUG INTERACTIONS IN HUMANS.
    Morse, B. L.
    Alberts, J. J.
    Kolur, A.
    Posada, M. M.
    Tham, L.
    Loghin, C.
    Hall, S. D.
    Dickinson, G. L.
    Hillgren, K. M.
    CLINICAL PHARMACOLOGY & THERAPEUTICS, 2019, 105 : S63 - S64
  • [5] Physiologically-Based Pharmacokinetic Modeling to Support the Clinical Management of Drug-Drug Interactions With Bictegravir
    Stader, Felix
    Battegay, Manuel
    Marzolini, Catia
    CLINICAL PHARMACOLOGY & THERAPEUTICS, 2021, 110 (05) : 1231 - 1239
  • [6] Prediction of Pharmacokinetic Drug-Drug Interactions Involving Anlotinib as a Victim by Using Physiologically Based Pharmacokinetic Modeling
    Bu, Fengjiao
    Cho, Yong-Soon
    He, Qingfeng
    Wang, Xiaowen
    Howlader, Saurav
    Kim, Dong-Hyun
    Zhu, Mingshe
    Shin, Jae Gook
    Xiang, Xiaoqiang
    DRUG DESIGN DEVELOPMENT AND THERAPY, 2024, 18 : 4585 - 4600
  • [7] Physiologically-based pharmacokinetic modeling to predict CYP3A4-mediated drug-drug interactions of finerenone
    Wendl, Thomas
    Frechen, Sebastian
    Gerisch, Michael
    Heinig, Roland
    Eissing, Thomas
    CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY, 2022, 11 (02): : 199 - 211
  • [8] Comprehensive Evaluation of OATP- and BCRP-Mediated Drug-Drug Interactions of Methotrexate Using Physiologically-Based Pharmacokinetic Modeling
    Hwang, Sejung
    Lee, Yujin
    Jang, Yeonseo
    Cho, Joo-Youn
    Yoon, Seonghae
    Chung, Jae-Yong
    CLINICAL PHARMACOLOGY & THERAPEUTICS, 2024, 116 (04) : 1013 - 1022
  • [9] Ribociclib Drug-Drug Interactions: Clinical Evaluations and Physiologically-Based Pharmacokinetic Modeling to Guide Drug Labeling
    Samant, Tanay S.
    Huth, Felix
    Umehara, Kenichi
    Schiller, Hilmar
    Dhuria, Shyeilla, V
    Elmeliegy, Mohamed
    Miller, Michelle
    Chakraborty, Abhijit
    Heimbach, Tycho
    He, Handan
    Ji, Yan
    CLINICAL PHARMACOLOGY & THERAPEUTICS, 2020, 108 (03) : 575 - 585
  • [10] Physiologically-Based Pharmacokinetic Model Development, Validation, and Application for Prediction of Eliglustat Drug-Drug Interactions
    Sahasrabudhe, Siddhee A.
    Cheng, Shen
    Al-Kofahi, Mahmoud
    Jarnes, Jeanine R.
    Weinreb, Neal J.
    Kartha, Reena, V
    CLINICAL PHARMACOLOGY & THERAPEUTICS, 2022, 112 (06) : 1254 - 1263