Data-driven identification of interpretable reduced-order models using sparse regression

被引:65
|
作者
Narasingam, Abhinav [1 ]
Sang-Il Kwon, Joseph [2 ]
机构
[1] Texas A&M Univ, Artie McFerrin Dept Chem Engn, College Stn, TX 77845 USA
[2] Texas A&M Univ, Texas A&M Energy Inst, College Stn, TX 77845 USA
关键词
Reduced-order model; Sparse regression; Hydraulic fracturing; Model predictive control; PARABOLIC PDE SYSTEMS; PROPER ORTHOGONAL DECOMPOSITION; LINEAR-SYSTEMS; REDUCTION; REALIZATION; SHRINKAGE; TRANSPORT;
D O I
10.1016/j.compchemeng.2018.08.010
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Developing physically interpretable reduced-order models (ROMs) is critical as they provide an understanding of the underlying phenomena apart from computational tractability for many chemical processes. In this work, we re-envision the model reduction of nonlinear dynamical systems from the perspective of regression. In particular, we solve a sparse regression problem over a large set of candidate functional forms to determine the structure of the ROM. The method balances model complexity and accuracy by selecting a sparse model that avoids overfitting to accurately represent the system dynamics when subjected to a different input profile. By applying to a hydraulic fracturing process, we demonstrate the ability of the developed models to reveal important physical phenomena such as proppant transport and fracture propagation inside a fracture. It also highlights how a priori knowledge can be incorporated easily into the algorithm and results in accurate ROMs that are used for controller synthesis. Published by Elsevier Ltd.
引用
收藏
页码:101 / 111
页数:11
相关论文
共 50 条
  • [21] Improving accuracy in parametric reduced-order models for classical guitars through data-driven discrepancy modeling
    Cillo, Pierfrancesco
    Brauchler, Alexander
    Gonzalez, Sebastian
    Ziegler, Pascal
    Antonacci, Fabio
    Sarti, Augusto
    Eberhard, Peter
    ACTA ACUSTICA, 2024, 8
  • [22] NONINTRUSIVE REDUCED-ORDER MODELS FOR PARAMETRIC PARTIAL DIFFERENTIAL EQUATIONS VIA DATA-DRIVEN OPERATOR INFERENCE
    Mcquarrie, Shane A.
    Khodabakhshi, Parisa
    Willcox, Karen E.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2023, 45 (04): : A1917 - A1946
  • [23] Seismic wavefield reconstruction based on compressed sensing using data-driven reduced-order model
    Nagata, T.
    Nakai, K.
    Yamada, K.
    Saito, Y.
    Nonomura, T.
    Kano, M.
    Ito, S.
    Nagao, H.
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2023, 233 (01) : 33 - 50
  • [24] Data-Driven Reduced Order Models Using Invariant Foliations, Manifolds and Autoencoders
    Robert Szalai
    Journal of Nonlinear Science, 2023, 33
  • [25] Data-Driven Reduced Order Models Using Invariant Foliations, Manifolds and Autoencoders
    Szalai, Robert
    JOURNAL OF NONLINEAR SCIENCE, 2023, 33 (05)
  • [26] A Data-Driven Reduced-Order Modeling Method for Dynamic Wind Farm Control
    Chen, Kaixuan
    Qiu, Yiwei
    Lin, Jin
    Song, Yonghua
    E-ENERGY'19: PROCEEDINGS OF THE 10TH ACM INTERNATIONAL CONFERENCE ON FUTURE ENERGY SYSTEMS, 2019, : 409 - 410
  • [27] A Data-Driven Reduced-Order Model for Estimating the Stimulated Reservoir Volume (SRV)
    Rezaei, Ali
    Aminzadeh, Fred
    ENERGIES, 2022, 15 (15)
  • [28] Data-driven closure of projection-based reduced order models for unsteady compressible flows
    Zucatti, Victor
    Wolf, William
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2021, 386
  • [29] Data-driven construction of a reduced-order model for supersonic boundary layer transition
    Yu, Ming
    Huang, Wei-Xi
    Xu, Chun-Xiao
    JOURNAL OF FLUID MECHANICS, 2019, 874 : 1096 - 1114
  • [30] Pressure data-driven variational multiscale reduced order models
    Ivagnes, Anna
    Stabile, Giovanni
    Mola, Andrea
    Iliescu, Traian
    Rozza, Gianluigi
    JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 476