Data-driven identification of interpretable reduced-order models using sparse regression

被引:65
|
作者
Narasingam, Abhinav [1 ]
Sang-Il Kwon, Joseph [2 ]
机构
[1] Texas A&M Univ, Artie McFerrin Dept Chem Engn, College Stn, TX 77845 USA
[2] Texas A&M Univ, Texas A&M Energy Inst, College Stn, TX 77845 USA
关键词
Reduced-order model; Sparse regression; Hydraulic fracturing; Model predictive control; PARABOLIC PDE SYSTEMS; PROPER ORTHOGONAL DECOMPOSITION; LINEAR-SYSTEMS; REDUCTION; REALIZATION; SHRINKAGE; TRANSPORT;
D O I
10.1016/j.compchemeng.2018.08.010
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Developing physically interpretable reduced-order models (ROMs) is critical as they provide an understanding of the underlying phenomena apart from computational tractability for many chemical processes. In this work, we re-envision the model reduction of nonlinear dynamical systems from the perspective of regression. In particular, we solve a sparse regression problem over a large set of candidate functional forms to determine the structure of the ROM. The method balances model complexity and accuracy by selecting a sparse model that avoids overfitting to accurately represent the system dynamics when subjected to a different input profile. By applying to a hydraulic fracturing process, we demonstrate the ability of the developed models to reveal important physical phenomena such as proppant transport and fracture propagation inside a fracture. It also highlights how a priori knowledge can be incorporated easily into the algorithm and results in accurate ROMs that are used for controller synthesis. Published by Elsevier Ltd.
引用
收藏
页码:101 / 111
页数:11
相关论文
共 50 条
  • [1] Dynamic data-driven reduced-order models
    Peherstorfer, Benjamin
    Willcox, Karen
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2015, 291 : 21 - 41
  • [2] On enforcing stability for data-driven reduced-order models
    Gosea, Ion Victor
    Poussot-Vassal, Charles
    Antoulas, Athanasios C.
    2021 29TH MEDITERRANEAN CONFERENCE ON CONTROL AND AUTOMATION (MED), 2021, : 487 - 493
  • [3] Hierarchical deep learning for data-driven identification of reduced-order models of nonlinear dynamical systems
    Li, Shanwu
    Yang, Yongchao
    NONLINEAR DYNAMICS, 2021, 105 (04) : 3409 - 3422
  • [4] Data-driven variational multiscale reduced order models
    Mou, Changhong
    Koc, Birgul
    San, Omer
    Rebholz, Leo G.
    Iliescu, Traian
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2021, 373
  • [5] Efficient data-driven reduced-order models for high-dimensional multiscale dynamical systems
    Chakraborty, Souvik
    Zabaras, Nicholas
    COMPUTER PHYSICS COMMUNICATIONS, 2018, 230 : 70 - 88
  • [6] Gradient preserving Operator Inference: Data-driven reduced-order models for equations with gradient structure
    Geng, Yuwei
    Singh, Jasdeep
    Ju, Lili
    Kramer, Boris
    Wang, Zhu
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2024, 427
  • [7] A data-driven reduced-order model for rotor optimization
    Peters, Nicholas
    Silva, Christopher
    Ekaterinaris, John
    WIND ENERGY SCIENCE, 2023, 8 (07) : 1201 - 1223
  • [8] Application of physics-constrained data-driven reduced-order models to shape optimization
    Karbasian, Hamid R.
    Vermeire, Brian C.
    JOURNAL OF FLUID MECHANICS, 2022, 934
  • [9] Reduced-order models for coupled dynamical systems: Data-driven methods and the Koopman operator
    Santos Gutierrez, Manuel
    Lucarini, Valerio
    Chekroun, Mickael D.
    Ghil, Michael
    CHAOS, 2021, 31 (05)
  • [10] Bayesian operator inference for data-driven reduced-order modeling
    Guo, Mengwu
    McQuarrie, Shane A.
    Willcox, Karen E.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2022, 402